bsc-leon-vatthauer/slides/sections/01_abstracting.tex
2024-01-11 13:38:32 +01:00

56 lines
No EOL
1.4 KiB
TeX

\section{Categorical Notions of Partiality}
% \begin{frame}[t, fragile]{Classifying Partiality Monads}
% A partiality monad should have the following properties:
% \begin{itemize}
% \item The following two programs should yield equal results:
% \begin{multicols}{2}
% \begin{minted}{haskell}
% do x <- p
% y <- q
% return (x, y)
% \end{minted}
% \begin{minted}{haskell}
% do y <- q
% x <- p
% return (x, y)
% \end{minted}
% \end{multicols}
% where p and q are (partial) computations.
% \end{itemize}
% \end{frame}
\begin{frame}[t, fragile]{Capturing Partiality Categorically}
\begin{itemize}
\item moggi denotational semantics (values A, computations TA)
\item restriction categories
\item equational lifting monads
\end{itemize}
\end{frame}
\begin{frame}[t, fragile]{The Maybe Monad}
\begin{itemize}
\item Short definition
\item is equational lifting monad
\end{itemize}
\end{frame}
\begin{frame}[t, fragile]{The Delay Monad}
\begin{itemize}
\item Definition
\item Strong-Bisimilarity
\item Weak-Bisimilarity (Monad?)
\end{itemize}
\end{frame}
\begin{frame}[t, fragile]{Iteration}
\begin{itemize}
\item Elgot-Algebras
\item Free Elgot-Algebras yield monad K
\item K is equational lifting
\item K instantiates to maybe and delay
\end{itemize}
\end{frame}