bsc-leon-vatthauer/ElgotAlgebra.agda

228 lines
No EOL
18 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

open import Level renaming (suc to -suc)
open import Function using (_$_) renaming (id to idf; _∘_ to _∘ᶠ_)
open import Data.Product using (_,_) renaming (_×_ to _∧_)
open import Categories.Category.Cocartesian.Bundle using (CocartesianCategory)
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Algebra
open import Categories.Object.Product
open import Categories.Object.Coproduct
open import Categories.Category
open import Distributive.Core
open import Categories.Category.Cartesian
open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian
open import Extensive.Bundle
open import Extensive.Core
private
variable
o e : Level
module _ (D : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
open Cocartesian cocartesian
open Cartesian cartesian
--*
-- F-guarded Elgot Algebra
--*
module _ {F : Endofunctor C} (FA : F-Algebra F) where
record Guarded-Elgot-Algebra : Set (o e) where
open Functor F public
open F-Algebra FA public
-- iteration operator
field
_# : {X} (X A + F₀ X) (X A)
-- _# properties
field
#-Fixpoint : {X} {f : X A + F₀ X }
f # [ idC , α F₁ (f #) ] f
#-Uniformity : {X Y} {f : X A + F₀ X} {g : Y A + F₀ Y} {h : X Y}
(idC +₁ F₁ h) f g h
f # g # h
#-Compositionality : {X Y} {f : X A + F₀ X} {h : Y X + F₀ Y}
(((f #) +₁ idC) h)# ([ (idC +₁ (F₁ i₁)) f , i₂ (F₁ i₂) ] [ i₁ , h ])# i₂
#-resp-≈ : {X} {f g : X A + F₀ X}
f g
(f #) (g #)
--*
-- (unguarded) Elgot-Algebra
--*
module _ where
record Elgot-Algebra : Set (o e) where
-- Object
field
A : Obj
-- iteration operator
field
_# : {X} (X A + X) (X A)
-- _# properties
field
#-Fixpoint : {X} {f : X A + X }
f # [ idC , f # ] f
#-Uniformity : {X Y} {f : X A + X} {g : Y A + Y} {h : X Y}
(idC +₁ h) f g h
f # g # h
#-Folding : {X Y} {f : X A + X} {h : Y X + Y}
((f #) +₁ h)# [ (idC +₁ i₁) f , i₂ h ] #
#-resp-≈ : {X} {f g : X A + X} f g (f #) (g #)
open HomReasoning
open Equiv
-- Compositionality is derivable
#-Compositionality : {X Y} {f : X A + X} {h : Y X + Y}
(((f #) +₁ idC) h)# ([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂
#-Compositionality {X} {Y} {f} {h} = begin
(((f #) +₁ idC) h)# ≈⟨ #-Uniformity {f = ((f #) +₁ idC) h} {g = (f #) +₁ h} {h = h} (
begin
((idC +₁ h) ((f #) +₁ idC) h) ≈⟨ sym-assoc
(((idC +₁ h) ((f #) +₁ idC)) h) ≈⟨ ∘-resp-≈ˡ +₁∘+₁
((((idC (f #)) +₁ (h idC))) h) ≈⟨ ∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)
((((f #) +₁ h)) h) )
((f # +₁ h)# h) ≈⟨ sym inject₂
(([ idC (f #) , (f # +₁ h)# h ] i₂)) ≈⟨ ∘-resp-≈ˡ (sym $ []∘+₁)
(([ idC , ((f # +₁ h)#) ] (f # +₁ h)) i₂) ≈⟨ (sym $ ∘-resp-≈ˡ (#-Fixpoint {f = (f # +₁ h) }))
(f # +₁ h)# i₂ ≈⟨ ∘-resp-≈ˡ #-Folding
([ (idC +₁ i₁) f , i₂ h ] # i₂) ≈⟨ ∘-resp-≈ˡ #-Fixpoint
([ idC , [ (idC +₁ i₁) f , i₂ h ] # ] [ (idC +₁ i₁) f , i₂ h ]) i₂ ≈⟨ assoc
[ idC , [ (idC +₁ i₁) f , i₂ h ] # ] ([ (idC +₁ i₁) f , i₂ h ] i₂) ≈⟨ ∘-resp-≈ʳ inject₂
[ idC , [ (idC +₁ i₁) f , i₂ h ] # ] (i₂ h) ≈⟨ sym-assoc
(([ idC , [ (idC +₁ i₁) f , i₂ h ] # ] i₂) h) ≈⟨ ∘-resp-≈ˡ inject₂
([ (idC +₁ i₁) f , i₂ h ] # h) ≈⟨ ∘-resp-≈ʳ $ sym (inject₂ {f = i₁} {g = h})
[ (idC +₁ i₁) f , i₂ h ] # ([ i₁ , h ] i₂) ≈⟨ sym-assoc
(([ (idC +₁ i₁) f , i₂ h ] # [ i₁ , h ]) i₂) ≈⟨ sym (∘-resp-≈ˡ (#-Uniformity {f = [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ]} {g = [ (idC +₁ i₁) f , i₂ h ]} {h = [ i₁ , h ]} (
begin
(idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ] ≈⟨ ∘-resp-≈ʳ ∘[]
(idC +₁ [ i₁ , h ]) [ [ (idC +₁ i₁) f , i₂ i₂ ] i₁ , [ (idC +₁ i₁) f , i₂ i₂ ] h ] ≈⟨ ∘-resp-≈ʳ ([]-congʳ inject₁)
((idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f , [ (idC +₁ i₁) f , i₂ i₂ ] h ]) ≈⟨ ∘[]
[ (idC +₁ [ i₁ , h ]) ((idC +₁ i₁) f) , (idC +₁ [ i₁ , h ]) ([ (idC +₁ i₁) f , i₂ i₂ ] h) ] ≈⟨ []-cong₂ sym-assoc sym-assoc
[ ((idC +₁ [ i₁ , h ]) (idC +₁ i₁)) f , ((idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f , i₂ i₂ ]) h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ ∘[])
[ ((idC idC) +₁ ([ i₁ , h ] i₁)) f , ([ (idC +₁ [ i₁ , h ]) ((idC +₁ i₁) f) , (idC +₁ [ i₁ , h ]) (i₂ i₂) ]) h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² (inject₁))) (∘-resp-≈ˡ ([]-cong₂ sym-assoc sym-assoc))
[ (idC +₁ i₁) f , ([ ((idC +₁ [ i₁ , h ]) (idC +₁ i₁)) f , ((idC +₁ [ i₁ , h ]) i₂) i₂ ]) h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ inject₂)))
[ (idC +₁ i₁) f , ([ ((idC idC) +₁ ([ i₁ , h ] i₁)) f , (i₂ [ i₁ , h ]) i₂ ]) h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² inject₁)) assoc))
[ (idC +₁ i₁) f , ([ (idC +₁ i₁) f , i₂ ([ i₁ , h ] i₂) ]) h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-congˡ (∘-resp-≈ʳ inject₂)))
[ (idC +₁ i₁) f , [ (idC +₁ i₁) f , i₂ h ] h ] ≈⟨ []-congʳ (sym (inject₁))
[ [ (idC +₁ i₁) f , i₂ h ] i₁ , [ (idC +₁ i₁) f , i₂ h ] h ] ≈⟨ sym ∘[]
[ (idC +₁ i₁) f , i₂ h ] [ i₁ , h ] ))
)
([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂
-- every elgot-algebra comes with a divergence constant
!ₑ : A
!ₑ = i₂ #
--*
-- Here follows the proof of equivalence for unguarded and Id-guarded Elgot-Algebras
--*
private
-- identity functor on 𝒞
Id : Functor C C
Id = idF {C = C}
-- identity algebra
Id-Algebra : Obj F-Algebra Id
Id-Algebra A = record
{ A = A
; α = idC
}
where open Functor Id
-- constructing an Id-Guarded Elgot-Algebra from an unguarded one
Unguarded→Id-Guarded : (EA : Elgot-Algebra) Guarded-Elgot-Algebra (Id-Algebra (Elgot-Algebra.A EA))
Unguarded→Id-Guarded ea = record
{ _# = _#
; #-Fixpoint = λ {X} {f} begin
f # ≈⟨ #-Fixpoint
[ idC , f # ] f ≈⟨ sym $ ∘-resp-≈ˡ ([]-congˡ identityˡ)
[ idC , idC f # ] f
; #-Uniformity = #-Uniformity
; #-Compositionality = #-Compositionality
; #-resp-≈ = #-resp-≈
}
where
open Elgot-Algebra ea
open HomReasoning
open Equiv
-- constructing an unguarded Elgot-Algebra from an Id-Guarded one
Id-Guarded→Unguarded : {A : Obj} Guarded-Elgot-Algebra (Id-Algebra A) Elgot-Algebra
Id-Guarded→Unguarded gea = record
{ _# = _#
; #-Fixpoint = λ {X} {f} begin
f # ≈⟨ #-Fixpoint
[ idC , idC f # ] f ≈⟨ ∘-resp-≈ˡ ([]-congˡ identityˡ)
[ idC , f # ] f
; #-Uniformity = #-Uniformity
; #-Folding = λ {X} {Y} {f} {h} begin
((f #) +₁ h) # ≈⟨ sym +-g-η
[ (f # +₁ h)# i₁ , (f # +₁ h)# i₂ ] ≈⟨ []-cong₂ left right
[ [ (idC +₁ i₁) f , i₂ h ] # i₁ , [ (idC +₁ i₁) f , i₂ h ] # i₂ ] ≈⟨ +-g-η
([ (idC +₁ i₁) f , i₂ h ] #)
; #-resp-≈ = #-resp-≈
}
where
open Guarded-Elgot-Algebra gea
open HomReasoning
open Equiv
left : {X Y} {f : X A + X} {h : Y X + Y}
(f # +₁ h)# i₁ [ (idC +₁ i₁) f , i₂ h ] # i₁
left {X} {Y} {f} {h} = begin
(f # +₁ h)# i₁ ≈⟨ ∘-resp-≈ˡ #-Fixpoint
(([ idC , idC (((f #) +₁ h) #) ] ((f #) +₁ h)) i₁) ≈⟨ assoc
([ idC , idC (((f #) +₁ h) #) ] (((f #) +₁ h) i₁)) ≈⟨ ∘-resp-≈ ([]-congˡ identityˡ) +₁∘i₁
([ idC , ((f #) +₁ h) # ] (i₁ (f #))) ≈⟨ sym-assoc
(([ idC , ((f #) +₁ h) # ] i₁) (f #)) ≈⟨ ∘-resp-≈ˡ inject₁
idC (f #) ≈⟨ identityˡ
(f #) ≈⟨ #-Uniformity {f = f} {g = [ (idC +₁ i₁) f , i₂ h ]} {h = i₁} (sym inject₁)
([ (idC +₁ i₁) f , i₂ h ] # i₁)
right : {X Y} {f : X A + X} {h : Y X + Y}
(f # +₁ h)# i₂ [ (idC +₁ i₁) f , i₂ h ] # i₂
right {X} {Y} {f} {h} = begin
(f # +₁ h)# i₂ ≈⟨ ∘-resp-≈ˡ #-Fixpoint
(([ idC , idC (((f #) +₁ h) #) ] ((f #) +₁ h)) i₂) ≈⟨ assoc
([ idC , idC (((f #) +₁ h) #) ] ((f #) +₁ h) i₂) ≈⟨ ∘-resp-≈ ([]-congˡ identityˡ) +₁∘i₂
([ idC , ((f #) +₁ h) # ] (i₂ h)) ≈⟨ sym-assoc
([ idC , ((f #) +₁ h) # ] i₂) h ≈⟨ ∘-resp-≈ˡ inject₂
((f #) +₁ h) # h ≈⟨ sym (#-Uniformity {f = ((f #) +₁ idC) h} {g = (f #) +₁ h} {h = h} (
begin
(idC +₁ h) ((f #) +₁ idC) h ≈⟨ sym-assoc
(((idC +₁ h) ((f #) +₁ idC)) h) ≈⟨ ∘-resp-≈ˡ +₁∘+₁
(((idC (f #)) +₁ (h idC)) h) ≈⟨ ∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)
(f # +₁ h) h )
)
((((f #) +₁ idC) h) #) ≈⟨ #-Compositionality
(([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂) ≈⟨ ∘-resp-≈ˡ (#-Uniformity {f = [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ]} {g = [ (idC +₁ i₁) f , i₂ h ]} {h = [ i₁ , h ]} (
begin
(idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ] ≈⟨ ∘-resp-≈ʳ ∘[]
(idC +₁ [ i₁ , h ]) [ [ (idC +₁ i₁) f , i₂ i₂ ] i₁ , [ (idC +₁ i₁) f , i₂ i₂ ] h ] ≈⟨ ∘-resp-≈ʳ ([]-congʳ inject₁)
((idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f , [ (idC +₁ i₁) f , i₂ i₂ ] h ]) ≈⟨ ∘[]
[ (idC +₁ [ i₁ , h ]) ((idC +₁ i₁) f) , (idC +₁ [ i₁ , h ]) ([ (idC +₁ i₁) f , i₂ i₂ ] h) ] ≈⟨ []-cong₂ sym-assoc sym-assoc
[ ((idC +₁ [ i₁ , h ]) (idC +₁ i₁)) f , ((idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f , i₂ i₂ ]) h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ ∘[])
[ ((idC idC) +₁ ([ i₁ , h ] i₁)) f , ([ (idC +₁ [ i₁ , h ]) ((idC +₁ i₁) f) , (idC +₁ [ i₁ , h ]) (i₂ i₂) ]) h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² (inject₁))) (∘-resp-≈ˡ ([]-cong₂ sym-assoc sym-assoc))
[ (idC +₁ i₁) f , ([ ((idC +₁ [ i₁ , h ]) (idC +₁ i₁)) f , ((idC +₁ [ i₁ , h ]) i₂) i₂ ]) h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ inject₂)))
[ (idC +₁ i₁) f , ([ ((idC idC) +₁ ([ i₁ , h ] i₁)) f , (i₂ [ i₁ , h ]) i₂ ]) h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² inject₁)) assoc))
[ (idC +₁ i₁) f , ([ (idC +₁ i₁) f , i₂ ([ i₁ , h ] i₂) ]) h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-congˡ (∘-resp-≈ʳ inject₂)))
[ (idC +₁ i₁) f , [ (idC +₁ i₁) f , i₂ h ] h ] ≈⟨ []-congʳ (sym (inject₁))
[ [ (idC +₁ i₁) f , i₂ h ] i₁ , [ (idC +₁ i₁) f , i₂ h ] h ] ≈⟨ sym ∘[]
[ (idC +₁ i₁) f , i₂ h ] [ i₁ , h ] )
)
(([ (idC +₁ i₁) f , i₂ h ] # [ i₁ , h ]) i₂) ≈⟨ assoc
([ (idC +₁ i₁) f , i₂ h ] # ([ i₁ , h ] i₂)) ≈⟨ (∘-resp-≈ʳ $ inject₂)
([ (idC +₁ i₁) f , i₂ h ] # h) ≈⟨ sym $ ∘-resp-≈ˡ inject₂
(([ idC , [ (idC +₁ i₁) f , i₂ h ] # ] i₂) h) ≈⟨ assoc
([ idC , [ (idC +₁ i₁) f , i₂ h ] # ] i₂ h) ≈⟨ sym (∘-resp-≈ ([]-congˡ identityˡ) inject₂)
([ idC , idC [ (idC +₁ i₁) f , i₂ h ] # ] ([ (idC +₁ i₁) f , i₂ h ] i₂)) ≈⟨ sym-assoc
(([ idC , idC [ (idC +₁ i₁) f , i₂ h ] # ] [ (idC +₁ i₁) f , i₂ h ]) i₂) ≈⟨ ∘-resp-≈ˡ (sym #-Fixpoint)
([ (idC +₁ i₁) f , i₂ h ] # i₂)
-- unguarded elgot-algebras are just Id-guarded Elgot-Algebras
Unguarded↔Id-Guarded : ((ea : Elgot-Algebra) Guarded-Elgot-Algebra (Id-Algebra (Elgot-Algebra.A ea))) ( {A : Obj} Guarded-Elgot-Algebra (Id-Algebra A) Elgot-Algebra)
Unguarded↔Id-Guarded = Unguarded→Id-Guarded , Id-Guarded→Unguarded