bsc-leon-vatthauer/agda/bsc-thesis/Relation.Binary.Reasoning.Preorder.html
2024-02-09 17:53:52 +01:00

38 lines
No EOL
3.7 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE HTML>
<html><head><meta charset="utf-8"><title>Relation.Binary.Reasoning.Preorder</title><link rel="stylesheet" href="Agda.css"></head><body><pre class="Agda"><a id="1" class="Comment">------------------------------------------------------------------------</a>
<a id="74" class="Comment">-- The Agda standard library</a>
<a id="103" class="Comment">--</a>
<a id="106" class="Comment">-- Convenient syntax for &quot;equational reasoning&quot; using a preorder</a>
<a id="171" class="Comment">------------------------------------------------------------------------</a>
<a id="245" class="Comment">-- Example uses:</a>
<a id="262" class="Comment">--</a>
<a id="265" class="Comment">-- uy : u y</a>
<a id="283" class="Comment">-- uy = begin</a>
<a id="301" class="Comment">-- u ≈⟨ u≈v ⟩</a>
<a id="321" class="Comment">-- v ≡⟨ v≡w ⟩</a>
<a id="341" class="Comment">-- w ∼⟨ wy ⟩</a>
<a id="361" class="Comment">-- y ≈⟨ z≈y ⟩</a>
<a id="381" class="Comment">-- z ∎</a>
<a id="394" class="Comment">--</a>
<a id="397" class="Comment">-- u≈w : u ≈ w</a>
<a id="415" class="Comment">-- u≈w = begin-equality</a>
<a id="442" class="Comment">-- u ≈⟨ u≈v ⟩</a>
<a id="462" class="Comment">-- v ≡⟨ v≡w ⟩</a>
<a id="482" class="Comment">-- w ≡⟨ x≡w ⟨</a>
<a id="502" class="Comment">-- x ∎</a>
<a id="516" class="Symbol">{-#</a> <a id="520" class="Keyword">OPTIONS</a> <a id="528" class="Pragma">--cubical-compatible</a> <a id="549" class="Pragma">--safe</a> <a id="556" class="Symbol">#-}</a>
<a id="561" class="Keyword">open</a> <a id="566" class="Keyword">import</a> <a id="573" href="Relation.Binary.Bundles.html" class="Module">Relation.Binary.Bundles</a> <a id="597" class="Keyword">using</a> <a id="603" class="Symbol">(</a><a id="604" href="Relation.Binary.Bundles.html#2121" class="Record">Preorder</a><a id="612" class="Symbol">)</a>
<a id="615" class="Keyword">module</a> <a id="622" href="Relation.Binary.Reasoning.Preorder.html" class="Module">Relation.Binary.Reasoning.Preorder</a>
<a id="659" class="Symbol">{</a><a id="660" href="Relation.Binary.Reasoning.Preorder.html#660" class="Bound">p₁</a> <a id="663" href="Relation.Binary.Reasoning.Preorder.html#663" class="Bound">p₂</a> <a id="666" href="Relation.Binary.Reasoning.Preorder.html#666" class="Bound">p₃</a><a id="668" class="Symbol">}</a> <a id="670" class="Symbol">(</a><a id="671" href="Relation.Binary.Reasoning.Preorder.html#671" class="Bound">P</a> <a id="673" class="Symbol">:</a> <a id="675" href="Relation.Binary.Bundles.html#2121" class="Record">Preorder</a> <a id="684" href="Relation.Binary.Reasoning.Preorder.html#660" class="Bound">p₁</a> <a id="687" href="Relation.Binary.Reasoning.Preorder.html#663" class="Bound">p₂</a> <a id="690" href="Relation.Binary.Reasoning.Preorder.html#666" class="Bound">p₃</a><a id="692" class="Symbol">)</a> <a id="694" class="Keyword">where</a>
<a id="701" class="Keyword">open</a> <a id="706" href="Relation.Binary.Bundles.html#2121" class="Module">Preorder</a> <a id="715" href="Relation.Binary.Reasoning.Preorder.html#671" class="Bound">P</a>
<a id="718" class="Comment">------------------------------------------------------------------------</a>
<a id="791" class="Comment">-- Publicly re-export the contents of the base module</a>
<a id="846" class="Keyword">open</a> <a id="851" class="Keyword">import</a> <a id="858" href="Relation.Binary.Reasoning.Base.Double.html" class="Module">Relation.Binary.Reasoning.Base.Double</a> <a id="896" href="Relation.Binary.Bundles.html#2334" class="Field">isPreorder</a> <a id="907" class="Keyword">public</a>
</pre></body></html>