added comments

This commit is contained in:
Leon Vatthauer 2023-07-15 12:29:26 +02:00
parent f2cccdbdf0
commit c521bf635a
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8

View file

@ -32,8 +32,11 @@ ExtensionSystem→Monad {𝒞 = 𝒞} 𝐾 = record
{ F = T
; η = η'
; μ = μ'
-- M3
; identityˡ = Identityˡ
-- M2
; identityʳ = K2
-- M1
; assoc = assoc'
; sym-assoc = sym assoc'
}
@ -45,20 +48,22 @@ ExtensionSystem→Monad {𝒞 = 𝒞} 𝐾 = record
T = RMonad⇒Functor 𝐾
open Functor T renaming (F₁ to T₁)
open Equiv
-- constructing the natural transformation η from the given family of morphisms 'unit'
η' = ntHelper {F = Id} {G = T} record
{ η = λ X unit
; commute = λ {X} {Y} f sym K2
}
-- constructing the natural transformation μ
μ' = ntHelper {F = T ∘F T} {G = T} record
{ η = λ X (idC {A = T₀ X})
; commute = λ {X} {Y} f begin
((idC ) (unit (unit f))) ≈⟨ (sym $ K3)
(((idC ) unit ((unit f) )) ) ≈⟨ ᵀ-≈ sym-assoc
((((idC ) unit) ((unit f) )) ) ≈⟨ ᵀ-≈ (∘-resp-≈ˡ K2)
((idC ((unit f) )) ) ≈⟨ ᵀ-≈ identityˡ
(((unit f) ) ) ≈⟨ ᵀ-≈ (sym identityʳ)
((((unit f) ) idC) ) ≈⟨ K3
(unit f) (idC )
((idC ) (unit (unit f))) ≈⟨ (sym $ K3)
(((idC ) unit ((unit f) )) ) ≈⟨ ᵀ-≈ sym-assoc
((((idC ) unit) ((unit f) )) ) ≈⟨ ᵀ-≈ (∘-resp-≈ˡ K2)
((idC ((unit f) )) ) ≈⟨ ᵀ-≈ identityˡ
(((unit f) ) ) ≈⟨ ᵀ-≈ (sym identityʳ)
((((unit f) ) idC) ) ≈⟨ K3
(unit f) (idC )
}
open NaturalTransformation η' using () renaming (η to η)
open NaturalTransformation μ' using () renaming (η to μ)