added comments
This commit is contained in:
parent
f2cccdbdf0
commit
c521bf635a
1 changed files with 12 additions and 7 deletions
|
@ -32,8 +32,11 @@ ExtensionSystem→Monad {𝒞 = 𝒞} 𝐾 = record
|
||||||
{ F = T
|
{ F = T
|
||||||
; η = η'
|
; η = η'
|
||||||
; μ = μ'
|
; μ = μ'
|
||||||
|
-- M3
|
||||||
; identityˡ = Identityˡ
|
; identityˡ = Identityˡ
|
||||||
|
-- M2
|
||||||
; identityʳ = K2
|
; identityʳ = K2
|
||||||
|
-- M1
|
||||||
; assoc = assoc'
|
; assoc = assoc'
|
||||||
; sym-assoc = sym assoc'
|
; sym-assoc = sym assoc'
|
||||||
}
|
}
|
||||||
|
@ -45,10 +48,12 @@ ExtensionSystem→Monad {𝒞 = 𝒞} 𝐾 = record
|
||||||
T = RMonad⇒Functor 𝐾
|
T = RMonad⇒Functor 𝐾
|
||||||
open Functor T renaming (F₁ to T₁)
|
open Functor T renaming (F₁ to T₁)
|
||||||
open Equiv
|
open Equiv
|
||||||
|
-- constructing the natural transformation η from the given family of morphisms 'unit'
|
||||||
η' = ntHelper {F = Id} {G = T} record
|
η' = ntHelper {F = Id} {G = T} record
|
||||||
{ η = λ X → unit
|
{ η = λ X → unit
|
||||||
; commute = λ {X} {Y} f → sym K2
|
; commute = λ {X} {Y} f → sym K2
|
||||||
}
|
}
|
||||||
|
-- constructing the natural transformation μ
|
||||||
μ' = ntHelper {F = T ∘F T} {G = T} record
|
μ' = ntHelper {F = T ∘F T} {G = T} record
|
||||||
{ η = λ X → (idC {A = T₀ X})ᵀ
|
{ η = λ X → (idC {A = T₀ X})ᵀ
|
||||||
; commute = λ {X} {Y} f → begin
|
; commute = λ {X} {Y} f → begin
|
||||||
|
|
Loading…
Reference in a new issue