Initial commit
This commit is contained in:
commit
ac004c0623
2 changed files with 84 additions and 0 deletions
81
Poset.agda
Normal file
81
Poset.agda
Normal file
|
@ -0,0 +1,81 @@
|
|||
module Poset where
|
||||
|
||||
open import Level
|
||||
open import Relation.Binary
|
||||
open import Categories.Monad
|
||||
open import Categories.Category
|
||||
open import Categories.Category.Construction.Thin
|
||||
open import Categories.Functor renaming (id to Id)
|
||||
open import Categories.NaturalTransformation
|
||||
open import Data.Product renaming (_×_ to _∧_)
|
||||
open import Agda.Builtin.Unit
|
||||
|
||||
private
|
||||
variable
|
||||
o ℓ₁ ℓ₂ e : Level
|
||||
|
||||
|
||||
-- Definining a closure operator on a poset
|
||||
record Closure (𝑃 : Poset o ℓ₁ ℓ₂) : Set (o ⊔ ℓ₁ ⊔ ℓ₂) where
|
||||
open Poset 𝑃 using (Carrier; _≤_; _≈_)
|
||||
field
|
||||
T : Carrier → Carrier
|
||||
extensiveness : ∀ {X : Carrier} → X ≤ T X
|
||||
monotonicity : ∀ {X Y : Carrier} → X ≤ Y → T X ≤ T Y
|
||||
idempotence : ∀ {X : Carrier} → T (T X) ≈ T X
|
||||
|
||||
|
||||
--*
|
||||
-- Proposition: closure operators on posets are equivalent to monads on the corresponding thin category
|
||||
--*
|
||||
|
||||
-- '→'
|
||||
Closure→Monad : ∀ {𝑃 : Poset o ℓ₁ ℓ₂} → Closure 𝑃 → Monad {o} {ℓ₂} {e} (Thin e 𝑃)
|
||||
Closure→Monad {𝑃 = 𝑃} T = record
|
||||
{ F = F
|
||||
; η = η'
|
||||
; μ = μ'
|
||||
|
||||
; assoc = λ {X} → lift tt
|
||||
; sym-assoc = λ {X} → lift tt
|
||||
; identityˡ = λ {X} → lift tt
|
||||
; identityʳ = λ {X} → lift tt
|
||||
}
|
||||
where
|
||||
open Closure T renaming (T to T₀)
|
||||
open Poset 𝑃 using (Carrier; _≤_; _≈_; reflexive)
|
||||
F = record
|
||||
{ F₀ = T₀
|
||||
; F₁ = monotonicity
|
||||
; identity = lift tt
|
||||
; homomorphism = lift tt
|
||||
; F-resp-≈ = λ {A} {B} {f} {g} _ → lift tt
|
||||
}
|
||||
η' = ntHelper {F = Id} {G = F} record
|
||||
{ η = λ X → extensiveness
|
||||
; commute = λ {X} {Y} f → lift tt
|
||||
}
|
||||
μ' = ntHelper {F = F ∘F F} {G = F} record
|
||||
{ η = λ X → reflexive idempotence
|
||||
; commute = λ {X} {Y} f → lift tt
|
||||
}
|
||||
open NaturalTransformation η'
|
||||
open NaturalTransformation μ' renaming (η to μ)
|
||||
|
||||
|
||||
-- '←'
|
||||
Monad→Closure : ∀ {𝑃 : Poset o ℓ₁ ℓ₂} → Monad {o} {ℓ₂} {e} (Thin e 𝑃) → Closure 𝑃
|
||||
Monad→Closure {𝑃 = 𝑃} 𝑀 = record
|
||||
{ T = F₀
|
||||
; extensiveness = λ {X} → η.η X
|
||||
; monotonicity = F₁
|
||||
; idempotence = λ {X} → antisym (μ.η X) (η.η (F₀ X))
|
||||
}
|
||||
where
|
||||
open Poset 𝑃
|
||||
open Monad 𝑀
|
||||
open Functor F
|
||||
|
||||
-- full proof
|
||||
Closure↔Monad : ∀ {𝑃 : Poset o ℓ₁ ℓ₂} → (Closure 𝑃 → Monad {o} {ℓ₂} {e} (Thin e 𝑃)) ∧ (Monad {o} {ℓ₂} {e} (Thin e 𝑃) → Closure 𝑃)
|
||||
Closure↔Monad = Closure→Monad , Monad→Closure
|
3
Poset.agda-lib
Normal file
3
Poset.agda-lib
Normal file
|
@ -0,0 +1,3 @@
|
|||
name: Poset
|
||||
include: .
|
||||
depend: agda-categories, standard-library
|
Loading…
Reference in a new issue