algprog/agda/algebra.lagda.md

487 lines
16 KiB
Agda
Raw Normal View History

2024-03-20 15:43:45 +01:00
```agda
{-# OPTIONS --allow-unsolved-metas #-}
2024-03-20 15:43:45 +01:00
open import equality
module algebra where
```
# Algebra of programming
## Preliminaries (Types, Lemmas, Functions)
```agda
id : {A : Set} A A
id a = a
_! : {A B : Set} (b : B) A B
(b !) _ = b
```
We will need functional extensionality
```agda
postulate
extensionality : {A B : Set} (f g : A B) ( (x : A) f x g x) f g
ext-rev : {A B : Set} {f g : A B} f g ( (x : A) f x g x)
ext-rev {A} {B} {f} {g} refl x = refl
```
Function composition and some facts about it
```agda
infixr 9 _∘_
_∘_ : {A B C : Set} (g : B C) (f : A B) A C
(g f) x = g (f x)
{-# INLINE _∘_ #-}
identityʳ : {A B : Set} {f : A B} f id f
identityʳ {f} = refl
identityˡ : {A B : Set} {f : A B} id f f
identityˡ {f} = refl
_⟩∘⟨_ : {A B C : Set} {g i : B C} {f h : A B} g i f h g f i h
refl ⟩∘⟨ refl = refl
introˡ : {A B : Set} {f : A B} {h : B B} h id f h f
introˡ {f} {h} eq = trans (sym identityˡ) (sym eq ⟩∘⟨ refl)
introʳ : {A B : Set} {f : A B} {h : A A} h id f f h
introʳ {f} {h} eq = trans (sym identityʳ) (refl ⟩∘⟨ sym eq)
```
## Unit and void type
```agda
data : Set where
unit :
data : Set where
¡ : {B : Set} B
¡ ()
¡-unique : {B : Set} (f : B) f ¡
¡-unique f = extensionality f ¡ (λ ())
```
## Products
```agda
infixr 8 _×_
infixr 7 _×₁_
record _×_ (A B : Set) : Set where
constructor _,_
field
outl : A
outr : B
open _×_
×-cong : {A B : Set} {x y : A} {u v : B} x y u v (x , u) (y , v)
×-cong refl refl = refl
⟨_,_⟩ : {A B C : Set} (A B) (A C) A B × C
f , g x = (f x) , (g x)
project₁ : {A B C : Set} (f : A B) (g : A C) outl f , g f
project₁ _ _ = refl
project₂ : {A B C : Set} (f : A B) (g : A C) outr f , g g
project₂ _ _ = refl
⟨⟩-cong : {A B C : Set} (f g : A B) (h i : A C) f g h i f , h g , i
⟨⟩-cong f g h i refl refl = refl
⟨⟩-unique : {A B C : Set} (f : A B) (g : A C) (h : A B × C) outl h f outr h g h f , g
⟨⟩-unique f g h refl refl = refl
_×₁_ : {A B C D : Set} (f : A C) (g : B D) A × B C × D
_×₁_ f g (x , y) = f x , g y
```
Composition as function on products
```agda
comp : {A B C : Set} ((A B) × (B C)) A C
comp (f , g) x = g (f x)
```
curry, uncurry, eval
```agda
curry : {A B C : Set} (A × B C) (A B C)
curry f a b = f (a , b)
uncurry : {A B C : Set} (A B C) (A × B C)
uncurry f (a , b) = f a b
ev : {A B : Set} (A B) × A B
ev (f , a) = f a
```
**HOMEWORK 1**
```agda
curry-uncurry : {A B C : Set} curry uncurry {A} {B} {C} id
curry-uncurry = extensionality (curry uncurry) id λ _ refl
uncurry-curry : {A B C : Set} uncurry curry {A} {B} {C} id
uncurry-curry = extensionality (uncurry curry) id λ _ refl
```
## Naturals
```agda
data : Set where
zero :
succ :
{-# BUILTIN NATURAL #-}
data 𝔹 : Set where
true : 𝔹
false : 𝔹
{-# BUILTIN BOOL 𝔹 #-}
succ-inj : {x y : } succ x succ y x y
succ-inj refl = refl
-- todo rewrite foldn to use ugly cartesian product...
foldn : {C : Set} (C × (C C)) C
foldn (c , h) zero = c
foldn (c , h) (succ n) = h (foldn (c , h) n)
foldn-id : foldn (zero , succ) id {}
foldn-id = extensionality (foldn (zero , succ)) id helper
where
helper : (x : ) foldn (zero , succ) x id x
helper zero = refl
helper (succ n) rewrite helper n = refl
foldn-fusion : {C C' : Set} (c : C) (h : C C) (k : C C') (c' : C') (h' : C' C') k c c' k h h' k k foldn (c , h) foldn (c' , h')
foldn-fusion {C} {C'} c h k c' h' refl eq = extensionality (k foldn (c , h)) (foldn (k c , h')) helper
where
helper : (x : ) (k foldn (c , h)) x foldn (k c , h') x
helper zero = refl
helper (succ x) = begin
(k h) (foldn (c , h) x) ≡⟨ ext-rev eq (foldn (c , h) x)
(h' k) (foldn (c , h) x) ≡⟨ cong h' (helper x)
h' (foldn (k c , h') x)
```
### proving with the fusion law
```agda
add :
add zero n = n
add (succ m) n = succ (add m n)
plus :
plus n = foldn (n , succ)
plus' :
plus' = foldn (id , (comp id , succ ! ))
plus-test1 : plus 13 19 32
plus-test1 = refl
+ : ×
+ = uncurry (foldn (id , (comp id , succ ! )))
+-test1 : + (3 , 5) 8
+-test1 = refl
+-test2 : + (0 , 100) 100
+-test2 = refl
+-test3 : + (100 , 0) 100
+-test3 = refl
+0 : (n : ) + (n , 0) n
+0 zero = refl
+0 (succ n) rewrite +0 n = refl
-- TODO define with fusion la
plus-succˡ : {m n : } succ (plus m n) plus (succ m) n
plus-succˡ {m} {zero} = refl
plus-succˡ {m} {succ n} rewrite plus-succˡ {m} {n} = refl
plus-comm : {m n : } plus m n plus n m
plus-comm {zero} {n} = ext-rev foldn-id n
plus-comm {succ m} {n} rewrite plus-comm {n} {m} = sym (plus-succˡ {m} {n})
plus-comm' : {m n : } (plus m) (plus n) (plus n) (plus m)
plus-comm' {m} {n} = begin
(plus m) (foldn (n , succ)) ≡⟨ commute₁
foldn ((plus m n) , succ) ≡⟨ extensionality (foldn ((plus m n) , succ)) (foldn ((plus n m) , succ)) helper
foldn ((plus n m) , succ) ≡⟨ sym commute₂
(plus n) (foldn (m , succ))
where
helper : (x : ) foldn ((plus m n) , succ) x foldn ((plus n m) , succ) x
helper x rewrite plus-comm {m} {n} = refl
commute₁ = foldn-fusion n succ (plus m) (plus m n) succ refl refl
commute₂ = foldn-fusion m succ (plus n) (plus n m) succ refl refl
```
**HOMEWORK 2**
```agda
mul :
mul zero n = zero
mul (succ m) n = plus n (mul m n)
mul-test1 : mul 0 3 0
mul-test1 = refl
mul-test2 : mul 3 15 45
mul-test2 = refl
mult : (m : )
mult m = foldn (zero , (plus m))
times : ( × )
times = uncurry times'
where
times' :
times' = foldn ((zero !) , (comp curry outr , ev , + ! ))
times-test1 : times (1 , 1) 1
times-test1 = refl
times-test2 : times (123 , 15) 1845
times-test2 = refl
times-test3 : times (5 , 0) 0
times-test3 = refl
```
**HOMEWORK 3**
```agda
fac2 :
fac2 zero = 1
fac2 (succ n) = times (n , fac2 n)
fac :
fac = outr fac'
where
fac' : ( × )
fac' = foldn ((zero , succ zero) , succ outl , times (succ ×₁ id) )
fac-test1 : fac 5 120
fac-test1 = refl
fac-test2 : fac 0 1
fac-test2 = refl
```
Proofs from the script
```agda
distrib : (m n x : ) mult m (plus n x) plus (mult m n) (mult m x)
distrib m n x = begin
mult m (plus n x) ≡⟨ refl
mult m (foldn (n , succ) x) ≡⟨ ext-rev commute₁ x
foldn ((mult m n) , (plus m)) x ≡⟨ sym (ext-rev commute₂ x)
plus (mult m n) (foldn (zero , (plus m)) x) ≡⟨ refl
plus (mult m n) (mult m x)
where
commute₁ : (mult m) (foldn (n , succ)) foldn ((mult m n) , (plus m))
commute₁ = foldn-fusion n succ (mult m) (mult m n) (plus m) kc kh
where
kc : mult m n mult m n
kc = refl
kh : mult m succ plus m mult m
kh = refl
commute₂ : (plus (mult m n)) (foldn (zero , (plus m))) foldn ((mult m n) , (plus m))
commute₂ = foldn-fusion zero (plus m) (plus (mult m n)) (mult m n) (plus m) kc (kh m n)
where
kc : plus (mult m n) zero mult m n
kc = refl
kh : (m n : ) (plus (mult m n)) (plus m) (plus m) (plus (mult m n))
kh zero zero = refl
kh (succ m) zero = plus-comm'
kh m (succ n) = plus-comm'
induction : (p : 𝔹) p zero true ( (n : ) p (succ n) p n) p true !
induction p IS IH = begin
p ≡⟨ introʳ foldn-id
p foldn (zero , succ) ≡⟨ commute₁
foldn (true , id) ≡⟨ sym commute₂
(true !) foldn (zero , succ) ≡⟨ identityʳ
true !
where
commute₁ = foldn-fusion zero succ p true id IS (extensionality (p succ) p IH)
commute₂ = foldn-fusion zero succ (true !) true id refl refl
```
## Lists
```agda
data 𝕃 (A : Set) : Set where
nil : 𝕃 A
cons : (A × 𝕃 A) 𝕃 A
foldr : {A C : Set} (C × (A × C C)) 𝕃 A C
foldr (c , h) nil = c
foldr (c , h) (cons (x , xs)) = h (x , foldr (c , h) xs)
foldr-id : {A : Set} foldr (nil , cons) id {𝕃 A}
foldr-id {A} = extensionality (foldr (nil , cons)) id helper
where
helper : (x : 𝕃 A) foldr (nil , cons) x id x
helper nil = refl
helper (cons (x , xs)) rewrite helper xs = refl
foldr-fusion : {A B B' : Set} (c : B) (h : A × B B) (k : B B') (c' : B') (h' : A × B' B')
k c c'
k h h' (id ×₁ k)
k foldr (c , h) foldr (c' , h')
foldr-fusion {A} c h k c' h' kc kh = extensionality (k foldr (c , h)) (foldr (c' , h')) helper
where
helper : (x : 𝕃 A) k (foldr (c , h) x) foldr (c' , h') x
helper nil = kc
helper (cons (x , xs)) rewrite ext-rev kh (x , foldr (c , h) xs) | helper xs = refl
length : {A : Set} 𝕃 A
length {A} = foldr (zero , h)
where
h : A ×
h = succ outr
isempty? : {A : Set} 𝕃 A 𝔹
isempty? = foldr (true , (false !))
cat : {A : Set} 𝕃 A × 𝕃 A 𝕃 A
cat = uncurry (foldr (id , curry (cons outl outl , ev (outr ×₁ id) )))
sum : 𝕃
sum = foldr (0 , +)
```
**HOMEWORK 4**
```agda
take : {A : Set} 𝕃 A 𝕃 A
take zero = nil !
take (succ n) = foldr (nil , (cons (id ×₁ take n)))
```
**HOMEWORK 5**
We show that the `list` function is functorial:
```agda
list : {A B : Set} (A B) 𝕃 A 𝕃 B
list f = foldr (nil , (cons (f ×₁ id)))
list-id : {A : Set} list id id {𝕃 A}
list-id = foldr-id
list-homomorphism : {A B C : Set} (f : A B) (g : B C) (list g) (list f) list (g f)
list-homomorphism {A} {B} {C} f g = foldr-fusion nil (cons (f ×₁ id)) (list g) nil (cons ((g f) ×₁ id)) refl refl
```
**HOMEWORK 6**
Ackermann function:
```agda
ack : ×
ack = uncurry (foldn (succ , h))
where
-- https://arxiv.org/pdf/1602.05010.pdf
-- first look
h' : ( )
h' f = foldn (f 1 , f)
-- pointfree
h : ( )
h = curry (ev ((foldn ev id , 1 ! , id ) ×₁ id))
-- pointwise definition for comparison
ack' :
ack' 0 = succ
ack' (succ n) zero = ack' n 1
ack' (succ n) (succ m) = ack' n (ack' (succ n) m)
ack-test1 : ack (3 , 3) ack' 3 3
ack-test1 = refl
ack-test2 : ack (0 , 3) ack' 0 3
ack-test2 = refl
ack-test3 : ack (3 , 2) ack' 3 2
ack-test3 = refl
ack-test4 : ack (2 , 2) ack' 2 2
ack-test4 = refl
```
**HOMEWORK 7**
Trees:
```agda
data 𝕋 (A : Set) : Set where
leaf : A 𝕋 A
bin : 𝕋 A × 𝕋 A 𝕋 A
foldt : {A C : Set} ((A C) × ((C × C) C)) 𝕋 A C
foldt (c , h) (leaf a) = c a
foldt (c , h) (bin (s , t)) = h (foldt (c , h) s , foldt (c , h) t)
front : {A : Set} 𝕋 A 𝕃 A
front = foldt ((cons id , nil ! ) , cat)
foldt-id : {A : Set} foldt (leaf , bin) id {𝕋 A}
foldt-id {A} = extensionality (foldt (leaf , bin)) id helper
where
helper : (x : 𝕋 A) foldt (leaf , bin) x id x
helper (leaf x) = refl
helper (bin (x , y)) rewrite helper x | helper y = refl
foldt-fusion : {A C C' : Set} (c : A C) (h : C × C C) (k : C C') (c' : A C') (h' : C' × C' C') k c c' k h h' (k ×₁ k) k foldt (c , h) foldt (c' , h')
foldt-fusion {A} {C} {C'} c h k c' h' kc kh = extensionality (k foldt (c , h)) (foldt (c' , h')) helper
where
helper : (x : 𝕋 A) k (foldt (c , h) x) foldt (c' , h') x
helper (leaf x) = ext-rev kc x
helper (bin (s , t)) rewrite ext-rev kh (foldt (c , h) s , foldt (c , h) t) | helper s | helper t = refl
```
**HOMEWORK 8**
```agda
sumt : 𝕋
sumt = foldt (id , +)
front-sum : sumt sum front
front-sum = sym (foldt-fusion (cons id , nil ! ) cat sum id + (extensionality _ _ triangle) square)
where
triangle : x (sum (cons id , nil ! )) x id x
triangle x rewrite +0 x = refl
square : sum cat + (sum ×₁ sum)
square = extensionality _ _ helper
where
helper : (x : 𝕃 × 𝕃 ) (sum cat) x (+ (sum ×₁ sum)) x
helper = {! !}
```
**HOMEWORK 9**
```agda
data 𝕋' (A : Set) : Set where
leaf' : A 𝕋' A
bin' : A × 𝕋' A × 𝕋' A 𝕋' A
foldb : {A C : Set} ((A C) × (A × C × C C)) 𝕋' A C
foldb (c , h) (leaf' x) = c x
foldb (c , h) (bin' (x , (s , t))) = h (x , (foldb (c , h) s , foldb (c , h) t))
foldb-id : {A : Set} foldb (leaf' , bin') id {𝕋' A}
foldb-id {A} = extensionality (foldb (leaf' , bin')) id helper
where
helper : (x : 𝕋' A) foldb (leaf' , bin') x id x
helper (leaf' x) = refl
helper (bin' (x , (t , s))) rewrite helper t | helper s = refl
foldb-fusion : {A C C' : Set} (c : A C) (h : A × C × C C) (k : C C') (c' : A C') (h' : A × C' × C' C') k c c' k h h' (id ×₁ k ×₁ k) k foldb (c , h) foldb (c' , h')
foldb-fusion {A} {C} {C'} c h k c' h' kc kh = extensionality _ _ helper
where
helper : (x : 𝕋' A) (k foldb (c , h)) x foldb (c' , h') x
helper (leaf' x) = ext-rev kc x
helper (bin' (x , (s , t))) rewrite ext-rev kh (x , (foldb (c , h) s , foldb (c , h) t)) | helper s | helper t = refl
size : {A : Set} 𝕋' A
size = foldb ((1 !) , (succ + outr))
flatten : {A : Set} 𝕋' A 𝕃 A
flatten = foldb ((cons id , nil ! ) , (cons (id ×₁ cat)))
flatten-size : {A : Set} length flatten size {A}
flatten-size {A} = foldb-fusion (cons id , nil ! ) (cons (id ×₁ cat)) length (1 !) (succ + outr) refl square
where
square : length (cons ((id ×₁ cat))) (succ + outr) (id ×₁ length ×₁ length)
square = {! !}
```