Work on limits

This commit is contained in:
Leon Vatthauer 2024-03-29 16:31:28 +01:00
parent 16e70f6bb2
commit 479336a7dd
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
2 changed files with 135 additions and 1 deletions

Binary file not shown.

View file

@ -980,4 +980,138 @@ Dual to F-algebras the \emph{initial F-coalgebra} is trivial:
\end{example}
\section{Limits}
\section{Colimits}
Limits are an abstraction of products and many other categorical concepts.
\begin{definition}[Limit] We will need to introduce some related notions first.
\begin{enumerate}
\item A \emph{diagram} in $\CC$ is a functor $D : \CD \to \CC$, where $\CD$ is small.
\item A \emph{cone} of a diagram $D : \CD \to \CC$ consists of
\begin{itemize}
\item an object $C \in \obj{\CC}$ called the \emph{apex} and
\item a family of morphisms ${(f_d : C \to Dd)}_{d\in\obj{\CD}}$ such that
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJDIl0sWzAsMiwiRGQiXSxbMiwyLCJEZCciXSxbMCwxLCJmX2QiLDJdLFswLDIsImZfe2QnfSJdLFsxLDIsInUiXV0=
\[\begin{tikzcd}
C \\
\\
Dd && {Dd'}
\arrow["{f_d}"', from=1-1, to=3-1]
\arrow["{f_{d'}}", from=1-1, to=3-3]
\arrow["u", from=3-1, to=3-3]
\end{tikzcd}\]
commutes for every $u : d \to d'$.
\end{itemize}
\item A \emph{limit} of a diagram $D$ is a universal cone, i.e.\ a cone $(L, out_d)$ such that for every cone $(C, f_d)$ there exists a unique morphism $h : C \to L$ such that $out_d \comp h = f_d$ for all $d \in \obj{\CD}$:
% https://q.uiver.app/#q=WzAsMyxbMiwwLCJMIl0sWzIsMiwiRGQiXSxbMCwwLCJDIl0sWzAsMSwib3V0X2QiXSxbMiwwLCJoIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzIsMSwiZl9kIiwyXV0=
\[\begin{tikzcd}
C && L \\
\\
&& Dd
\arrow["{out_d}", from=1-3, to=3-3]
\arrow["h", dashed, from=1-1, to=1-3]
\arrow["{f_d}"', from=1-1, to=3-3]
\end{tikzcd}\]
\end{enumerate}
\end{definition}
The notion of limit can be instantiated to many interesting notions:
\begin{definition}[Products (as limits)]
Let $\CD$ be the discrete category with 2 elements. Diagrams $D$ are pairs $(A,B)$ of objects of $\CC$, cones are pairs of morphisms
\[A \overset{f}{\longleftarrow} C \overset{g}{\longrightarrow} B\]
and limits of such diagrams are exactly products:
\[A \overset{\fst}{\longleftarrow} A\times B \overset{\snd}{\longrightarrow} B.\]
\end{definition}
\begin{definition}[Equalizer]
Let $\CD$ be a category with two non-trivial and parallel morphisms $u,v : 1 \to 2$. Diagrams are parallel morphisms
% https://q.uiver.app/#q=WzAsMixbMCwwLCJBXzEiXSxbMiwwLCJBXzIiXSxbMCwxLCJmIiwwLHsib2Zmc2V0IjotMX1dLFswLDEsImciLDIseyJvZmZzZXQiOjF9XV0=
\[\begin{tikzcd}
{A_1} && {A_2}
\arrow["f", shift left, from=1-1, to=1-3]
\arrow["g"', shift right, from=1-1, to=1-3]
\end{tikzcd}\]
and cones are pairs of morphisms $c : C \to A_1, d C \to A_2$, such that $f \comp c = d = g \comp c$:
% https://q.uiver.app/#q=WzAsMyxbMCwyLCJBXzEiXSxbMiwyLCJBXzIiXSxbMCwwLCJDIl0sWzAsMSwiZiIsMCx7Im9mZnNldCI6LTF9XSxbMCwxLCJnIiwyLHsib2Zmc2V0IjoxfV0sWzIsMCwiYyIsMl0sWzIsMSwiZCJdXQ==
\[\begin{tikzcd}
C \\
\\
{A_1} && {A_2}
\arrow["f", shift left, from=3-1, to=3-3]
\arrow["g"', shift right, from=3-1, to=3-3]
\arrow["c"', from=1-1, to=3-1]
\arrow["d", from=1-1, to=3-3]
\end{tikzcd}\]
A limit of such a diagram is called an \emph{equalizer} of $f$ and $g$:
% https://q.uiver.app/#q=WzAsNCxbMiwyLCJBXzEiXSxbNCwyLCJBXzIiXSxbMiwwLCJDIl0sWzAsMiwiRSJdLFswLDEsImYiLDAseyJvZmZzZXQiOi0xfV0sWzAsMSwiZyIsMix7Im9mZnNldCI6MX1dLFsyLDAsIlxcZm9yYWxsIGMiLDJdLFsyLDEsImQiXSxbMywwLCJlIl0sWzIsMywiXFxleGlzdHMhaCIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==
\[\begin{tikzcd}
&& C \\
\\
E && {A_1} && {A_2}
\arrow["f", shift left, from=3-3, to=3-5]
\arrow["g"', shift right, from=3-3, to=3-5]
\arrow["{\forall c}"', from=1-3, to=3-3]
\arrow["d", from=1-3, to=3-5]
\arrow["e", from=3-1, to=3-3]
\arrow["{\exists!h}"', dashed, from=1-3, to=3-1]
\end{tikzcd}\]
\end{definition}
% TODO equalizer in Set
% \begin{example}
% In $\Set$...
% \end{example}
\begin{definition}[Regular Monomorphism]
A monomorphism is called \emph{regular} if it is also an equalizer.
\end{definition}
\begin{proposition}
Every equalizer is a monomorphism and thus a regular monomorphism.
\end{proposition}
\begin{proof}
% TODO prove that eq are mono.
\end{proof}
\begin{proposition}
$e$ is a regular monomorphism and an epimorphism $\iff$ e is an isomorphism.
\end{proposition}
\begin{proof}
% TODO prove that regular mono + epi == iso
\end{proof}
\begin{definition}[Pullback]
% TODO pullback
\end{definition}
% TODO pullback in Set
% \begin{example}
% In $\Set$...
% \end{example}
\begin{proposition}
Limits are unique up to isomorphism.
\end{proposition}
\begin{definition}[Complete Category]
A category $\CC$ is called \emph{complete} if every diagram in $\CC$ has a limit.
\end{definition}
\begin{proposition}
$\CC$ is complete iff $\CC$ has all products and equalizers, i.e.\ using products and equalizer one can construct arbitrary limits.
\end{proposition}
\begin{definition}[Finitely Complete Category]
A category $\CC$ is called \emph{finitely complete} if every finite diagram in $\CC$ has a limit.
\end{definition}
\begin{proposition}
The following are equivalent:
\begin{enumerate}
\item $\CC$ is finitely complete
\item $\CC$ has finite products and equalizers
\item $\CC$ has finite products and pullbacks
\item $\CC$ has a terminal object and pullbacks
\end{enumerate}
\end{proposition}
\section{Colimits}
% TODO colimits