Work on bisimilarity

This commit is contained in:
Leon Vatthauer 2024-04-05 19:27:19 +02:00
parent 43ad4706b0
commit 59b2631a13
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8

View file

@ -944,7 +944,7 @@ Dual to F-algebras the \emph{initial F-coalgebra} is trivial:
\end{example}
\begin{definition}[Bisimulation]
Let $F : \Set \to \Set$ and let $(C,c), (D,d)$ be F-coalgebras.
Let $F : \Set \to \Set$ and let $(C,c), (D,d)$ be F-coalgebras.
A \emph{bisimulation} is a relation $R \subseteq C \times D$ such that a coalgebra $(R, r)$ exists where
% https://q.uiver.app/#q=WzAsOCxbMCwwLCJDIl0sWzAsMiwiRkMiXSxbMiwwLCJSIl0sWzIsMiwiRlIiXSxbNCwwLCJEIl0sWzQsMiwiRkQiXSxbMSwxLCJcXGNvbW0iXSxbMywxLCJcXGNvbW0iXSxbMCwxLCJjIl0sWzIsMywiciJdLFs0LDUsImQiXSxbMiwwLCJcXHBpXzEiLDJdLFsyLDQsIlxccGlfMiJdLFszLDEsIkZcXHBpXzEiLDJdLFszLDUsIkZcXHBpXzIiXV0=
\[\begin{tikzcd}
@ -963,9 +963,53 @@ Dual to F-algebras the \emph{initial F-coalgebra} is trivial:
Two elements $c \in C, d \in D$ are called \emph{bisimilar} if there exists a bisimulation $R$ such that $xRy$ holds.
\end{definition}
\begin{proposition}
\begin{proposition} Let $\CC$ be a category that has pushouts, then
\[x,y \text{ bisimilar} \Rightarrow x \sim y\]
\end{proposition}
\begin{proof}
Let $x \in (C,c)$ and $y \in (D,d)$ be bisimilar with the bisimilarity $R \subseteq C \times D$.
Since $\CC$ has pushouts, also $\Alg{F}$ has pushouts.
Consider the following pushout:
% https://q.uiver.app/#q=WzAsNSxbMSwwLCIoUixyKSJdLFsyLDEsIihELGQpIl0sWzAsMSwiKEMsYykiXSxbMSwyLCIoUCxwKSJdLFsxLDEsIlxcY29tbSJdLFswLDIsIlxccGlfMSIsMl0sWzAsMSwiXFxwaV8yIl0sWzIsMywiaF9jIiwyXSxbMSwzLCJoX2QiXSxbMywwLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyLWludmVyc2UifX1dXQ==
\[\begin{tikzcd}
& {(R,r)} \\
{(C,c)} & \comm & {(D,d)} \\
& {(P,p)}
\arrow["{\pi_1}"', from=1-2, to=2-1]
\arrow["{\pi_2}", from=1-2, to=2-3]
\arrow["{h_c}"', from=2-1, to=3-2]
\arrow["{h_d}", from=2-3, to=3-2]
\arrow["\ulcorner"{anchor=center, pos=0.125, rotate=135}, draw=none, from=3-2, to=1-2]
\end{tikzcd}\]
It thus suffices to show that $h_c(x) = h_d(y)$, which indeed follows by the pushout diagram:
\[h_c(x) = h_c(\pi_1(x,y)) = h_d(\pi_2(x,y)) = h_d(y).\]
\end{proof}
\begin{proposition}
If the terminal F-coalgebra $\nu F$ exists, then
\[x,y \text{ bisimilar} \Rightarrow x \sim y\]
\end{proposition}
\begin{proof}
Consider the diagram
% https://q.uiver.app/#q=WzAsNCxbMCwxLCIoQyxjKSJdLFsxLDAsIihSLHIpIl0sWzIsMSwiKEQsZCkiXSxbMSwyLCIoXFxudSBGLHQpIl0sWzEsMCwiXFxwaV8xIiwyXSxbMSwyLCJcXHBpXzIiXSxbMCwzLCJoX2MiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCJoX2QiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMSwzLCJoX3AiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XV0=
\[\begin{tikzcd}
& {(R,r)} \\
{(C,c)} && {(D,d)} \\
& {(\nu F,t)}
\arrow["{\pi_1}"', from=1-2, to=2-1]
\arrow["{\pi_2}", from=1-2, to=2-3]
\arrow["{h_c}"', dashed, from=2-1, to=3-2]
\arrow["{h_d}", dashed, from=2-3, to=3-2]
\arrow["{h_p}"', dashed, from=1-2, to=3-2]
\end{tikzcd}\]
Again, since $x$ and $y$ are bisimilar we get
\[h_c(x) = h_c(\pi_1(x,y)) = h_d(\pi_2(x,y)) = h_d(y).\]
\end{proof}
\begin{remark}
Bisimilarity of elements of the terminal F-coalgebra is equivalent to equality,
since then $R \subseteq \Delta = \{(x,x)\;\vert\;x\in \nu F\}$,
because in this case $\pi_1 = \pi_2$, by uniqueness of the morphism into the terminal F-coalgebra.
\end{remark}
% TODO proof and backwards direction.
\begin{example}