algprog/agda/algebra.lagda.md

487 lines
No EOL
16 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

```agda
{-# OPTIONS --allow-unsolved-metas #-}
open import equality
module algebra where
```
# Algebra of programming
## Preliminaries (Types, Lemmas, Functions)
```agda
id : {A : Set} A A
id a = a
_! : {A B : Set} (b : B) A B
(b !) _ = b
```
We will need functional extensionality
```agda
postulate
extensionality : {A B : Set} (f g : A B) ( (x : A) f x g x) f g
ext-rev : {A B : Set} {f g : A B} f g ( (x : A) f x g x)
ext-rev {A} {B} {f} {g} refl x = refl
```
Function composition and some facts about it
```agda
infixr 9 _∘_
_∘_ : {A B C : Set} (g : B C) (f : A B) A C
(g f) x = g (f x)
{-# INLINE _∘_ #-}
identityʳ : {A B : Set} {f : A B} f id f
identityʳ {f} = refl
identityˡ : {A B : Set} {f : A B} id f f
identityˡ {f} = refl
_⟩∘⟨_ : {A B C : Set} {g i : B C} {f h : A B} g i f h g f i h
refl ⟩∘⟨ refl = refl
introˡ : {A B : Set} {f : A B} {h : B B} h id f h f
introˡ {f} {h} eq = trans (sym identityˡ) (sym eq ⟩∘⟨ refl)
introʳ : {A B : Set} {f : A B} {h : A A} h id f f h
introʳ {f} {h} eq = trans (sym identityʳ) (refl ⟩∘⟨ sym eq)
```
## Unit and void type
```agda
data : Set where
unit :
data : Set where
¡ : {B : Set} B
¡ ()
¡-unique : {B : Set} (f : B) f ¡
¡-unique f = extensionality f ¡ (λ ())
```
## Products
```agda
infixr 8 _×_
infixr 7 _×₁_
record _×_ (A B : Set) : Set where
constructor _,_
field
outl : A
outr : B
open _×_
×-cong : {A B : Set} {x y : A} {u v : B} x y u v (x , u) (y , v)
×-cong refl refl = refl
⟨_,_⟩ : {A B C : Set} (A B) (A C) A B × C
f , g x = (f x) , (g x)
project₁ : {A B C : Set} (f : A B) (g : A C) outl f , g f
project₁ _ _ = refl
project₂ : {A B C : Set} (f : A B) (g : A C) outr f , g g
project₂ _ _ = refl
⟨⟩-cong : {A B C : Set} (f g : A B) (h i : A C) f g h i f , h g , i
⟨⟩-cong f g h i refl refl = refl
⟨⟩-unique : {A B C : Set} (f : A B) (g : A C) (h : A B × C) outl h f outr h g h f , g
⟨⟩-unique f g h refl refl = refl
_×₁_ : {A B C D : Set} (f : A C) (g : B D) A × B C × D
_×₁_ f g (x , y) = f x , g y
```
Composition as function on products
```agda
comp : {A B C : Set} ((A B) × (B C)) A C
comp (f , g) x = g (f x)
```
curry, uncurry, eval
```agda
curry : {A B C : Set} (A × B C) (A B C)
curry f a b = f (a , b)
uncurry : {A B C : Set} (A B C) (A × B C)
uncurry f (a , b) = f a b
ev : {A B : Set} (A B) × A B
ev (f , a) = f a
```
**HOMEWORK 1**
```agda
curry-uncurry : {A B C : Set} curry uncurry {A} {B} {C} id
curry-uncurry = extensionality (curry uncurry) id λ _ refl
uncurry-curry : {A B C : Set} uncurry curry {A} {B} {C} id
uncurry-curry = extensionality (uncurry curry) id λ _ refl
```
## Naturals
```agda
data : Set where
zero :
succ :
{-# BUILTIN NATURAL #-}
data 𝔹 : Set where
true : 𝔹
false : 𝔹
{-# BUILTIN BOOL 𝔹 #-}
succ-inj : {x y : } succ x succ y x y
succ-inj refl = refl
-- todo rewrite foldn to use ugly cartesian product...
foldn : {C : Set} (C × (C C)) C
foldn (c , h) zero = c
foldn (c , h) (succ n) = h (foldn (c , h) n)
foldn-id : foldn (zero , succ) id {}
foldn-id = extensionality (foldn (zero , succ)) id helper
where
helper : (x : ) foldn (zero , succ) x id x
helper zero = refl
helper (succ n) rewrite helper n = refl
foldn-fusion : {C C' : Set} (c : C) (h : C C) (k : C C') (c' : C') (h' : C' C') k c c' k h h' k k foldn (c , h) foldn (c' , h')
foldn-fusion {C} {C'} c h k c' h' refl eq = extensionality (k foldn (c , h)) (foldn (k c , h')) helper
where
helper : (x : ) (k foldn (c , h)) x foldn (k c , h') x
helper zero = refl
helper (succ x) = begin
(k h) (foldn (c , h) x) ≡⟨ ext-rev eq (foldn (c , h) x)
(h' k) (foldn (c , h) x) ≡⟨ cong h' (helper x)
h' (foldn (k c , h') x)
```
### proving with the fusion law
```agda
add :
add zero n = n
add (succ m) n = succ (add m n)
plus :
plus n = foldn (n , succ)
plus' :
plus' = foldn (id , (comp id , succ ! ))
plus-test1 : plus 13 19 32
plus-test1 = refl
+ : ×
+ = uncurry (foldn (id , (comp id , succ ! )))
+-test1 : + (3 , 5) 8
+-test1 = refl
+-test2 : + (0 , 100) 100
+-test2 = refl
+-test3 : + (100 , 0) 100
+-test3 = refl
+0 : (n : ) + (n , 0) n
+0 zero = refl
+0 (succ n) rewrite +0 n = refl
-- TODO define with fusion la
plus-succˡ : {m n : } succ (plus m n) plus (succ m) n
plus-succˡ {m} {zero} = refl
plus-succˡ {m} {succ n} rewrite plus-succˡ {m} {n} = refl
plus-comm : {m n : } plus m n plus n m
plus-comm {zero} {n} = ext-rev foldn-id n
plus-comm {succ m} {n} rewrite plus-comm {n} {m} = sym (plus-succˡ {m} {n})
plus-comm' : {m n : } (plus m) (plus n) (plus n) (plus m)
plus-comm' {m} {n} = begin
(plus m) (foldn (n , succ)) ≡⟨ commute₁
foldn ((plus m n) , succ) ≡⟨ extensionality (foldn ((plus m n) , succ)) (foldn ((plus n m) , succ)) helper
foldn ((plus n m) , succ) ≡⟨ sym commute₂
(plus n) (foldn (m , succ))
where
helper : (x : ) foldn ((plus m n) , succ) x foldn ((plus n m) , succ) x
helper x rewrite plus-comm {m} {n} = refl
commute₁ = foldn-fusion n succ (plus m) (plus m n) succ refl refl
commute₂ = foldn-fusion m succ (plus n) (plus n m) succ refl refl
```
**HOMEWORK 2**
```agda
mul :
mul zero n = zero
mul (succ m) n = plus n (mul m n)
mul-test1 : mul 0 3 0
mul-test1 = refl
mul-test2 : mul 3 15 45
mul-test2 = refl
mult : (m : )
mult m = foldn (zero , (plus m))
times : ( × )
times = uncurry times'
where
times' :
times' = foldn ((zero !) , (comp curry outr , ev , + ! ))
times-test1 : times (1 , 1) 1
times-test1 = refl
times-test2 : times (123 , 15) 1845
times-test2 = refl
times-test3 : times (5 , 0) 0
times-test3 = refl
```
**HOMEWORK 3**
```agda
fac2 :
fac2 zero = 1
fac2 (succ n) = times (n , fac2 n)
fac :
fac = outr fac'
where
fac' : ( × )
fac' = foldn ((zero , succ zero) , succ outl , times (succ ×₁ id) )
fac-test1 : fac 5 120
fac-test1 = refl
fac-test2 : fac 0 1
fac-test2 = refl
```
Proofs from the script
```agda
distrib : (m n x : ) mult m (plus n x) plus (mult m n) (mult m x)
distrib m n x = begin
mult m (plus n x) ≡⟨ refl
mult m (foldn (n , succ) x) ≡⟨ ext-rev commute₁ x
foldn ((mult m n) , (plus m)) x ≡⟨ sym (ext-rev commute₂ x)
plus (mult m n) (foldn (zero , (plus m)) x) ≡⟨ refl
plus (mult m n) (mult m x)
where
commute₁ : (mult m) (foldn (n , succ)) foldn ((mult m n) , (plus m))
commute₁ = foldn-fusion n succ (mult m) (mult m n) (plus m) kc kh
where
kc : mult m n mult m n
kc = refl
kh : mult m succ plus m mult m
kh = refl
commute₂ : (plus (mult m n)) (foldn (zero , (plus m))) foldn ((mult m n) , (plus m))
commute₂ = foldn-fusion zero (plus m) (plus (mult m n)) (mult m n) (plus m) kc (kh m n)
where
kc : plus (mult m n) zero mult m n
kc = refl
kh : (m n : ) (plus (mult m n)) (plus m) (plus m) (plus (mult m n))
kh zero zero = refl
kh (succ m) zero = plus-comm'
kh m (succ n) = plus-comm'
induction : (p : 𝔹) p zero true ( (n : ) p (succ n) p n) p true !
induction p IS IH = begin
p ≡⟨ introʳ foldn-id
p foldn (zero , succ) ≡⟨ commute₁
foldn (true , id) ≡⟨ sym commute₂
(true !) foldn (zero , succ) ≡⟨ identityʳ
true !
where
commute₁ = foldn-fusion zero succ p true id IS (extensionality (p succ) p IH)
commute₂ = foldn-fusion zero succ (true !) true id refl refl
```
## Lists
```agda
data 𝕃 (A : Set) : Set where
nil : 𝕃 A
cons : (A × 𝕃 A) 𝕃 A
foldr : {A C : Set} (C × (A × C C)) 𝕃 A C
foldr (c , h) nil = c
foldr (c , h) (cons (x , xs)) = h (x , foldr (c , h) xs)
foldr-id : {A : Set} foldr (nil , cons) id {𝕃 A}
foldr-id {A} = extensionality (foldr (nil , cons)) id helper
where
helper : (x : 𝕃 A) foldr (nil , cons) x id x
helper nil = refl
helper (cons (x , xs)) rewrite helper xs = refl
foldr-fusion : {A B B' : Set} (c : B) (h : A × B B) (k : B B') (c' : B') (h' : A × B' B')
k c c'
k h h' (id ×₁ k)
k foldr (c , h) foldr (c' , h')
foldr-fusion {A} c h k c' h' kc kh = extensionality (k foldr (c , h)) (foldr (c' , h')) helper
where
helper : (x : 𝕃 A) k (foldr (c , h) x) foldr (c' , h') x
helper nil = kc
helper (cons (x , xs)) rewrite ext-rev kh (x , foldr (c , h) xs) | helper xs = refl
length : {A : Set} 𝕃 A
length {A} = foldr (zero , h)
where
h : A ×
h = succ outr
isempty? : {A : Set} 𝕃 A 𝔹
isempty? = foldr (true , (false !))
cat : {A : Set} 𝕃 A × 𝕃 A 𝕃 A
cat = uncurry (foldr (id , curry (cons outl outl , ev (outr ×₁ id) )))
sum : 𝕃
sum = foldr (0 , +)
```
**HOMEWORK 4**
```agda
take : {A : Set} 𝕃 A 𝕃 A
take zero = nil !
take (succ n) = foldr (nil , (cons (id ×₁ take n)))
```
**HOMEWORK 5**
We show that the `list` function is functorial:
```agda
list : {A B : Set} (A B) 𝕃 A 𝕃 B
list f = foldr (nil , (cons (f ×₁ id)))
list-id : {A : Set} list id id {𝕃 A}
list-id = foldr-id
list-homomorphism : {A B C : Set} (f : A B) (g : B C) (list g) (list f) list (g f)
list-homomorphism {A} {B} {C} f g = foldr-fusion nil (cons (f ×₁ id)) (list g) nil (cons ((g f) ×₁ id)) refl refl
```
**HOMEWORK 6**
Ackermann function:
```agda
ack : ×
ack = uncurry (foldn (succ , h))
where
-- https://arxiv.org/pdf/1602.05010.pdf
-- first look
h' : ( )
h' f = foldn (f 1 , f)
-- pointfree
h : ( )
h = curry (ev ((foldn ev id , 1 ! , id ) ×₁ id))
-- pointwise definition for comparison
ack' :
ack' 0 = succ
ack' (succ n) zero = ack' n 1
ack' (succ n) (succ m) = ack' n (ack' (succ n) m)
ack-test1 : ack (3 , 3) ack' 3 3
ack-test1 = refl
ack-test2 : ack (0 , 3) ack' 0 3
ack-test2 = refl
ack-test3 : ack (3 , 2) ack' 3 2
ack-test3 = refl
ack-test4 : ack (2 , 2) ack' 2 2
ack-test4 = refl
```
**HOMEWORK 7**
Trees:
```agda
data 𝕋 (A : Set) : Set where
leaf : A 𝕋 A
bin : 𝕋 A × 𝕋 A 𝕋 A
foldt : {A C : Set} ((A C) × ((C × C) C)) 𝕋 A C
foldt (c , h) (leaf a) = c a
foldt (c , h) (bin (s , t)) = h (foldt (c , h) s , foldt (c , h) t)
front : {A : Set} 𝕋 A 𝕃 A
front = foldt ((cons id , nil ! ) , cat)
foldt-id : {A : Set} foldt (leaf , bin) id {𝕋 A}
foldt-id {A} = extensionality (foldt (leaf , bin)) id helper
where
helper : (x : 𝕋 A) foldt (leaf , bin) x id x
helper (leaf x) = refl
helper (bin (x , y)) rewrite helper x | helper y = refl
foldt-fusion : {A C C' : Set} (c : A C) (h : C × C C) (k : C C') (c' : A C') (h' : C' × C' C') k c c' k h h' (k ×₁ k) k foldt (c , h) foldt (c' , h')
foldt-fusion {A} {C} {C'} c h k c' h' kc kh = extensionality (k foldt (c , h)) (foldt (c' , h')) helper
where
helper : (x : 𝕋 A) k (foldt (c , h) x) foldt (c' , h') x
helper (leaf x) = ext-rev kc x
helper (bin (s , t)) rewrite ext-rev kh (foldt (c , h) s , foldt (c , h) t) | helper s | helper t = refl
```
**HOMEWORK 8**
```agda
sumt : 𝕋
sumt = foldt (id , +)
front-sum : sumt sum front
front-sum = sym (foldt-fusion (cons id , nil ! ) cat sum id + (extensionality _ _ triangle) square)
where
triangle : x (sum (cons id , nil ! )) x id x
triangle x rewrite +0 x = refl
square : sum cat + (sum ×₁ sum)
square = extensionality _ _ helper
where
helper : (x : 𝕃 × 𝕃 ) (sum cat) x (+ (sum ×₁ sum)) x
helper = {! !}
```
**HOMEWORK 9**
```agda
data 𝕋' (A : Set) : Set where
leaf' : A 𝕋' A
bin' : A × 𝕋' A × 𝕋' A 𝕋' A
foldb : {A C : Set} ((A C) × (A × C × C C)) 𝕋' A C
foldb (c , h) (leaf' x) = c x
foldb (c , h) (bin' (x , (s , t))) = h (x , (foldb (c , h) s , foldb (c , h) t))
foldb-id : {A : Set} foldb (leaf' , bin') id {𝕋' A}
foldb-id {A} = extensionality (foldb (leaf' , bin')) id helper
where
helper : (x : 𝕋' A) foldb (leaf' , bin') x id x
helper (leaf' x) = refl
helper (bin' (x , (t , s))) rewrite helper t | helper s = refl
foldb-fusion : {A C C' : Set} (c : A C) (h : A × C × C C) (k : C C') (c' : A C') (h' : A × C' × C' C') k c c' k h h' (id ×₁ k ×₁ k) k foldb (c , h) foldb (c' , h')
foldb-fusion {A} {C} {C'} c h k c' h' kc kh = extensionality _ _ helper
where
helper : (x : 𝕋' A) (k foldb (c , h)) x foldb (c' , h') x
helper (leaf' x) = ext-rev kc x
helper (bin' (x , (s , t))) rewrite ext-rev kh (x , (foldb (c , h) s , foldb (c , h) t)) | helper s | helper t = refl
size : {A : Set} 𝕋' A
size = foldb ((1 !) , (succ + outr))
flatten : {A : Set} 𝕋' A 𝕃 A
flatten = foldb ((cons id , nil ! ) , (cons (id ×₁ cat)))
flatten-size : {A : Set} length flatten size {A}
flatten-size {A} = foldb-fusion (cons id , nil ! ) (cons (id ×₁ cat)) length (1 !) (succ + outr) refl square
where
square : length (cons ((id ×₁ cat))) (succ + outr) (id ×₁ length ×₁ length)
square = {! !}
```