agda-gset/Category/G-Sets/Properties/A4.agda

47 lines
1.5 KiB
Agda
Raw Normal View History

2024-05-05 14:43:35 +02:00
open import Algebra.G-Set
open import Algebra.Group
open import Category.G-Sets
open import Categories.Category.Instance.Sets
open import Categories.Functor.Core
open import Categories.Category.Core
open import Relation.Binary.PropositionalEquality as using (_≡_)
open import Relation.Binary.PropositionalEquality.WithK
open import Axiom.UniquenessOfIdentityProofs.WithK
open import Data.Product
open import Data.Product.Properties renaming (Σ-≡,≡→≡ to peq)
open import Level
module Category.G-Sets.Properties.A4 {} (G : Group ) where
open Functor
open G-Set-Morphism using () renaming (u to <_>)
D : Functor (Sets ) (G-Sets G)
D .F₀ S = record
{ X = S
; _⊳_ = λ _ s s
; ε⊳ = ≡.refl
; ∘⊳ = ≡.refl
}
D .F₁ {A} {B} f = record
{ u = f
; equivariance = ≡.refl
}
D .identity = ≡.refl
D .homomorphism = ≡.refl
D .F-resp-≈ f≡g = f≡g
V : Functor (G-Sets G) (Sets )
V .F₀ GS = Orb
where
open G-Set GS
V .F₁ {A} {B} f (x , (y , (g , eq))) = (< f > x , (< f > y , (g , ≡.trans (≡.sym f.equivariance) (≡.cong < f > eq))))
where
open G-Set A
module f = G-Set-Morphism f
V .identity {GS} {(x , (y , (g , ≡.refl)))} = ≡.refl
V .homomorphism {X} {Y} {Z} {f} {g} = {!!}
V .F-resp-≈ {A} {B} {f} {g} eq {(x , (y , (h , ≡.refl)))} = peq (eq , {!!})
where
module f = G-Set-Morphism f
module g = G-Set-Morphism g
module A = G-Set A