46 lines
1.5 KiB
Agda
46 lines
1.5 KiB
Agda
open import Algebra.G-Set
|
||
open import Algebra.Group
|
||
open import Category.G-Sets
|
||
open import Categories.Category.Instance.Sets
|
||
open import Categories.Functor.Core
|
||
open import Categories.Category.Core
|
||
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
|
||
open import Relation.Binary.PropositionalEquality.WithK
|
||
open import Axiom.UniquenessOfIdentityProofs.WithK
|
||
open import Data.Product
|
||
open import Data.Product.Properties renaming (Σ-≡,≡→≡ to peq)
|
||
open import Level
|
||
|
||
module Category.G-Sets.Properties.A4 {ℓ} (G : Group ℓ) where
|
||
open Functor
|
||
open G-Set-Morphism using () renaming (u to <_>)
|
||
D : Functor (Sets ℓ) (G-Sets G)
|
||
D .F₀ S = record
|
||
{ X = S
|
||
; _⊳_ = λ _ s → s
|
||
; ε⊳ = ≡.refl
|
||
; ∘⊳ = ≡.refl
|
||
}
|
||
D .F₁ {A} {B} f = record
|
||
{ u = f
|
||
; equivariance = ≡.refl
|
||
}
|
||
D .identity = ≡.refl
|
||
D .homomorphism = ≡.refl
|
||
D .F-resp-≈ f≡g = f≡g
|
||
|
||
V : Functor (G-Sets G) (Sets ℓ)
|
||
V .F₀ GS = Orb
|
||
where
|
||
open G-Set GS
|
||
V .F₁ {A} {B} f (x , (y , (g , eq))) = (< f > x , (< f > y , (g , ≡.trans (≡.sym f.equivariance) (≡.cong < f > eq))))
|
||
where
|
||
open G-Set A
|
||
module f = G-Set-Morphism f
|
||
V .identity {GS} {(x , (y , (g , ≡.refl)))} = ≡.refl
|
||
V .homomorphism {X} {Y} {Z} {f} {g} = {!!}
|
||
V .F-resp-≈ {A} {B} {f} {g} eq {(x , (y , (h , ≡.refl)))} = peq (eq , {!!})
|
||
where
|
||
module f = G-Set-Morphism f
|
||
module g = G-Set-Morphism g
|
||
module A = G-Set A
|