bsc-leon-vatthauer/agda/src/Monad/Instance/K.lagda.md

63 lines
1.9 KiB
Markdown
Raw Normal View History

2023-08-19 12:15:34 +02:00
<!--
```agda
open import Level
open import Categories.FreeObjects.Free using (FreeObject; FO⇒Functor; FO⇒LAdj)
open import Categories.Functor.Core using (Functor)
open import Categories.Adjoint using (_⊣_)
open import Categories.Adjoint.Properties using (adjoint⇒monad)
open import Categories.Monad using (Monad)
open import Categories.Monad.Relative using () renaming (Monad to RMonad)
2023-12-01 17:15:38 +01:00
open import Category.Ambient using (Ambient)
open import Categories.Monad.Construction.Kleisli
2023-08-19 12:15:34 +02:00
```
-->
# The monad K
2023-08-19 12:15:34 +02:00
```agda
module Monad.Instance.K {o e} (ambient : Ambient o e) where
open Ambient ambient
2024-02-04 18:49:12 +01:00
open import Category.Construction.ElgotAlgebras {C = C}
open Cat cocartesian using (Elgot-Algebras)
open import Algebra.Elgot cocartesian using (Elgot-Algebra)
open import Algebra.Elgot.Free cocartesian using (FreeElgotAlgebra; elgotForgetfulF)
open import Algebra.Elgot.Stable distributive using (IsStableFreeElgotAlgebra)
2023-08-19 12:15:34 +02:00
2023-10-05 16:22:05 +02:00
open Equiv
2023-10-25 18:18:30 +02:00
open MR C
open M C
open HomReasoning
2023-08-19 12:15:34 +02:00
```
## Definition
The monad is defined by existence of free uniform-iteration algebras.
Since free objects yield and adjunctions, this yields a monad.
2023-08-19 12:15:34 +02:00
```agda
record MonadK : Set (suc o ⊔ suc ⊔ suc e) where
field
freealgebras : ∀ X → FreeElgotAlgebra X
stable : ∀ X → IsStableFreeElgotAlgebra (freealgebras X)
-- helper for accessing elgot algebras
algebras : ∀ (X : Obj) → Elgot-Algebra
algebras X = FreeObject.FX (freealgebras X)
2023-08-19 12:15:34 +02:00
freeF : Functor C Elgot-Algebras
freeF = FO⇒Functor elgotForgetfulF freealgebras
2023-08-19 12:15:34 +02:00
adjoint : freeF ⊣ elgotForgetfulF
adjoint = FO⇒LAdj elgotForgetfulF freealgebras
2023-08-19 12:15:34 +02:00
monadK : Monad C
monadK = adjoint⇒monad adjoint
module monadK = Monad monadK
2023-10-25 18:18:30 +02:00
kleisliK : KleisliTriple C
kleisliK = Monad⇒Kleisli C monadK
module kleisliK = RMonad kleisliK
2023-10-25 18:18:30 +02:00
module K = Functor monadK.F
```