2024-03-14 17:34:50 +01:00
|
|
|
|
-- Agda code that is included in the thesis.
|
|
|
|
|
-- just for making sure that everything used in the thesis actually compiles ;)
|
|
|
|
|
|
2024-03-11 18:15:46 +01:00
|
|
|
|
module Setoids where
|
2024-02-15 21:52:47 +01:00
|
|
|
|
open import Level
|
|
|
|
|
|
|
|
|
|
record _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
|
|
|
|
|
constructor _,_
|
|
|
|
|
field
|
|
|
|
|
fst : A
|
|
|
|
|
snd : B
|
|
|
|
|
open _×_
|
|
|
|
|
|
|
|
|
|
<_,_> : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
|
|
|
|
|
→ (A → B) → (A → C) → A → (B × C)
|
|
|
|
|
< f , g > x = (f x , g x)
|
|
|
|
|
|
|
|
|
|
record ⊤ {l} : Set l where
|
|
|
|
|
constructor tt
|
|
|
|
|
|
|
|
|
|
! : ∀ {l} {X : Set l} → X → ⊤ {l}
|
|
|
|
|
! _ = tt
|
|
|
|
|
|
|
|
|
|
data _+_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
|
|
|
|
|
i₁ : A → A + B
|
|
|
|
|
i₂ : B → A + B
|
|
|
|
|
|
|
|
|
|
[_,_] : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
|
|
|
|
|
→ (A → C) → (B → C) → (A + B) → C
|
|
|
|
|
[ f , g ] (i₁ x) = f x
|
|
|
|
|
[ f , g ] (i₂ x) = g x
|
|
|
|
|
|
|
|
|
|
data ⊥ {l} : Set l where
|
|
|
|
|
|
|
|
|
|
¡ : ∀ {l} {X : Set l} → ⊥ {l} → X
|
|
|
|
|
¡ ()
|
|
|
|
|
|
|
|
|
|
distributeˡ⁻¹ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (A × B) + (A × C) → A × (B + C)
|
|
|
|
|
distributeˡ⁻¹ (i₁ (x , y)) = (x , i₁ y)
|
|
|
|
|
distributeˡ⁻¹ (i₂ (x , y)) = (x , i₂ y)
|
|
|
|
|
|
|
|
|
|
distributeˡ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → A × (B + C) → (A × B) + (A × C)
|
|
|
|
|
distributeˡ (x , i₁ y) = i₁ (x , y)
|
|
|
|
|
distributeˡ (x , i₂ y) = i₂ (x , y)
|
|
|
|
|
|
|
|
|
|
curry : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} → (C × A → B) → C → A → B
|
|
|
|
|
curry f x y = f (x , y)
|
|
|
|
|
|
|
|
|
|
eval : ∀ {a b} {A : Set a} {B : Set b} → ((A → B) × A) → B
|
|
|
|
|
eval (f , x) = f x
|