mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
68 lines
2.8 KiB
Agda
68 lines
2.8 KiB
Agda
|
open import Level
|
|||
|
open import Categories.Category.Core
|
|||
|
open import Categories.Category.Distributive
|
|||
|
open import Categories.Category.Extensive.Bundle
|
|||
|
open import Categories.Category.Extensive
|
|||
|
open import Categories.Category.BinaryProducts
|
|||
|
open import Categories.Category.Cocartesian
|
|||
|
open import Categories.Category.Cartesian
|
|||
|
open import Categories.Object.Terminal
|
|||
|
open import Categories.Category.Construction.F-Coalgebras
|
|||
|
open import Categories.Functor.Coalgebra
|
|||
|
open import Categories.Functor
|
|||
|
open import Categories.Monad.Construction.Kleisli
|
|||
|
import Categories.Morphism as M
|
|||
|
import Categories.Morphism.Reasoning as MR
|
|||
|
|
|||
|
module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ e) where
|
|||
|
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
|
|||
|
open Cocartesian (Extensive.cocartesian extensive)
|
|||
|
open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
|
|||
|
open BinaryProducts products
|
|||
|
|
|||
|
open M C
|
|||
|
open MR C
|
|||
|
open Equiv
|
|||
|
open HomReasoning
|
|||
|
|
|||
|
-- Proposition 1
|
|||
|
record DelayMonad (D : Endofunctor C) : Set (o ⊔ ℓ ⊔ e) where
|
|||
|
open Functor D using () renaming (F₀ to D₀; F₁ to D₁)
|
|||
|
|
|||
|
field
|
|||
|
now : ∀ {X} → X ⇒ D₀ X
|
|||
|
later : ∀ {X} → D₀ X ⇒ D₀ X
|
|||
|
isIso : ∀ {X} → IsIso [ now {X} , later {X} ]
|
|||
|
|
|||
|
out : ∀ {X} → D₀ X ⇒ X + D₀ X
|
|||
|
out {X} = IsIso.inv (isIso {X})
|
|||
|
|
|||
|
field
|
|||
|
_* : ∀ {X Y} → X ⇒ D₀ Y → D₀ X ⇒ D₀ Y
|
|||
|
*-law : ∀ {X Y} {f : X ⇒ D₀ Y} → out ∘ (f *) ≈ [ out ∘ f , i₂ ∘ (f *) ] ∘ out
|
|||
|
*-unique : ∀ {X Y} (f : X ⇒ D₀ Y) (h : D₀ X ⇒ D₀ Y) → h ≈ f *
|
|||
|
*-resp-≈ : ∀ {X Y} {f h : X ⇒ D₀ Y} → f ≈ h → f * ≈ h *
|
|||
|
|
|||
|
unitLaw : ∀ {X} → out {X} ∘ now {X} ≈ i₁
|
|||
|
unitLaw = begin
|
|||
|
out ∘ now ≈⟨ refl⟩∘⟨ sym inject₁ ⟩
|
|||
|
out ∘ [ now , later ] ∘ i₁ ≈⟨ cancelˡ (IsIso.isoˡ isIso) ⟩
|
|||
|
i₁ ∎
|
|||
|
|
|||
|
toMonad : KleisliTriple C
|
|||
|
toMonad = record
|
|||
|
{ F₀ = D₀
|
|||
|
; unit = now
|
|||
|
; extend = _*
|
|||
|
; identityʳ = λ {X} {Y} {k} → begin
|
|||
|
k * ∘ now ≈⟨ introˡ (IsIso.isoʳ isIso) ⟩∘⟨refl ⟩
|
|||
|
(([ now , later ] ∘ out) ∘ k *) ∘ now ≈⟨ pullʳ *-law ⟩∘⟨refl ⟩
|
|||
|
([ now , later ] ∘ [ out ∘ k , i₂ ∘ (k *) ] ∘ out) ∘ now ≈⟨ pullʳ (pullʳ unitLaw) ⟩
|
|||
|
[ now , later ] ∘ [ out ∘ k , i₂ ∘ (k *) ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩
|
|||
|
[ now , later ] ∘ out ∘ k ≈⟨ cancelˡ (IsIso.isoʳ isIso) ⟩
|
|||
|
k ∎
|
|||
|
; identityˡ = λ {X} → sym (*-unique now idC)
|
|||
|
; assoc = λ {X} {Y} {Z} {f} {g} → sym (*-unique ((g *) ∘ f) ((g *) ∘ (f *)))
|
|||
|
; sym-assoc = λ {X} {Y} {Z} {f} {g} → *-unique ((g *) ∘ f) ((g *) ∘ (f *))
|
|||
|
; extend-≈ = *-resp-≈
|
|||
|
}
|