bsc-leon-vatthauer/ElgotAlgebra.agda

227 lines
14 KiB
Agda
Raw Normal View History

open import Level
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Algebra
open import Categories.Category
2023-07-28 20:50:27 +02:00
open import Categories.Category.Cartesian
open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian
open import Categories.Category.Extensive.Bundle
open import Categories.Category.Extensive
import Categories.Morphism.Reasoning as MR
private
variable
o e : Level
module _ (D : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
open Cocartesian (Extensive.cocartesian extensive)
open Cartesian (ExtensiveDistributiveCategory.cartesian D)
open MR C
--*
-- F-guarded Elgot Algebra
--*
module _ {F : Endofunctor C} (FA : F-Algebra F) where
record Guarded-Elgot-Algebra : Set (o e) where
open Functor F public
open F-Algebra FA public
-- iteration operator
field
_# : {X} (X A + F₀ X) (X A)
-- _# properties
field
#-Fixpoint : {X} {f : X A + F₀ X }
f # [ idC , α F₁ (f #) ] f
#-Uniformity : {X Y} {f : X A + F₀ X} {g : Y A + F₀ Y} {h : X Y}
(idC +₁ F₁ h) f g h
f # g # h
#-Compositionality : {X Y} {f : X A + F₀ X} {h : Y X + F₀ Y}
(((f #) +₁ idC) h)# ([ (idC +₁ (F₁ i₁)) f , i₂ (F₁ i₂) ] [ i₁ , h ])# i₂
#-resp-≈ : {X} {f g : X A + F₀ X}
f g
(f #) (g #)
--*
-- (unguarded) Elgot-Algebra
--*
record Elgot-Algebra : Set (o e) where
-- Object
field
A : Obj
-- iteration operator
field
_# : {X} (X A + X) (X A)
-- _# properties
field
#-Fixpoint : {X} {f : X A + X }
f # [ idC , f # ] f
#-Uniformity : {X Y} {f : X A + X} {g : Y A + Y} {h : X Y}
(idC +₁ h) f g h
f # g # h
#-Folding : {X Y} {f : X A + X} {h : Y X + Y}
((f #) +₁ h)# [ (idC +₁ i₁) f , i₂ h ] #
#-resp-≈ : {X} {f g : X A + X} f g (f #) (g #)
open HomReasoning
open Equiv
-- Compositionality is derivable
#-Compositionality : {X Y} {f : X A + X} {h : Y X + Y}
(((f #) +₁ idC) h)# ([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂
#-Compositionality {X} {Y} {f} {h} = begin
(((f #) +₁ idC) h)# ≈⟨ #-Uniformity {f = ((f #) +₁ idC) h}
{g = (f #) +₁ h}
{h = h}
(trans (pullˡ +₁∘+₁) (+₁-cong₂ identityˡ identityʳ ⟩∘⟨refl))
((f # +₁ h)# h) ≈˘⟨ inject₂
(([ idC (f #) , (f # +₁ h)# h ] i₂)) ≈˘⟨ []∘+₁ ⟩∘⟨refl
(([ idC , ((f # +₁ h)#) ] (f # +₁ h)) i₂) ≈˘⟨ #-Fixpoint {f = (f # +₁ h) } ⟩∘⟨refl
(f # +₁ h)# i₂ ≈⟨ #-Folding ⟩∘⟨refl
([ (idC +₁ i₁) f , i₂ h ] # i₂) ≈⟨ #-Fixpoint ⟩∘⟨refl
([ idC , [ (idC +₁ i₁) f , i₂ h ] # ]
[ (idC +₁ i₁) f , i₂ h ]) i₂ ≈⟨ pullʳ inject₂
[ idC , [ (idC +₁ i₁) f , i₂ h ] # ] (i₂ h) ≈⟨ pullˡ inject₂
([ (idC +₁ i₁) f , i₂ h ] # h) ≈˘⟨ refl⟩∘⟨ inject₂ {f = i₁} {g = h}
([ (idC +₁ i₁) f , i₂ h ] # [ i₁ , h ] i₂) ≈˘⟨ pushˡ (#-Uniformity {f = [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ]}
{g = [ (idC +₁ i₁) f , i₂ h ]}
{h = [ i₁ , h ]}
(begin
(idC +₁ [ i₁ , h ])
[ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ] ≈⟨ refl⟩∘⟨ ∘[]
(idC +₁ [ i₁ , h ]) [ [ (idC +₁ i₁) f , i₂ i₂ ] i₁
, [ (idC +₁ i₁) f , i₂ i₂ ] h ] ≈⟨ refl⟩∘⟨ []-congʳ inject₁
(idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f
, [ (idC +₁ i₁) f , i₂ i₂ ] h ] ≈⟨ ∘[]
[ (idC +₁ [ i₁ , h ]) ((idC +₁ i₁) f)
, (idC +₁ [ i₁ , h ]) ([ (idC +₁ i₁) f , i₂ i₂ ] h) ] ≈⟨ []-cong₂ (pullˡ +₁∘+₁) (pullˡ ∘[])
[ ((idC idC) +₁ ([ i₁ , h ] i₁)) f
, [ (idC +₁ [ i₁ , h ]) ((idC +₁ i₁) f)
, (idC +₁ [ i₁ , h ]) (i₂ i₂) ] h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² (inject₁)))
(∘-resp-≈ˡ ([]-cong₂ (pullˡ +₁∘+₁) (pullˡ inject₂)))
[ (idC +₁ i₁) f , ([ ((idC idC) +₁ ([ i₁ , h ] i₁)) f
, (i₂ [ i₁ , h ]) i₂ ]) h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² inject₁))
(pullʳ inject₂)))
[ (idC +₁ i₁) f , [ (idC +₁ i₁) f , i₂ h ] h ] ≈˘⟨ []-congʳ inject₁
[ [ (idC +₁ i₁) f , i₂ h ] i₁
, [ (idC +₁ i₁) f , i₂ h ] h ] ≈˘⟨ ∘[]
[ (idC +₁ i₁) f , i₂ h ] [ i₁ , h ] ))
([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂
-- every elgot-algebra comes with a divergence constant
!ₑ : A
!ₑ = i₂ #
--*
-- Here follows the proof of equivalence for unguarded and Id-guarded Elgot-Algebras
--*
private
-- identity algebra
Id-Algebra : Obj F-Algebra (idF {C = C})
Id-Algebra A = record
{ A = A
; α = idC
}
where open Functor (idF {C = C})
-- constructing an Id-Guarded Elgot-Algebra from an unguarded one
Unguarded→Id-Guarded : (EA : Elgot-Algebra) Guarded-Elgot-Algebra (Id-Algebra (Elgot-Algebra.A EA))
Unguarded→Id-Guarded ea = record
{ _# = _#
; #-Fixpoint = λ {X} {f} trans #-Fixpoint (sym (∘-resp-≈ˡ ([]-congˡ identityˡ)))
; #-Uniformity = #-Uniformity
; #-Compositionality = #-Compositionality
; #-resp-≈ = #-resp-≈
}
where
open Elgot-Algebra ea
open HomReasoning
open Equiv
-- constructing an unguarded Elgot-Algebra from an Id-Guarded one
Id-Guarded→Unguarded : {A : Obj} Guarded-Elgot-Algebra (Id-Algebra A) Elgot-Algebra
Id-Guarded→Unguarded gea = record
{ _# = _#
; #-Fixpoint = λ {X} {f} trans #-Fixpoint (∘-resp-≈ˡ ([]-congˡ identityˡ))
; #-Uniformity = #-Uniformity
; #-Folding = λ {X} {Y} {f} {h} begin
((f #) +₁ h) # ≈˘⟨ +-g-η
[ (f # +₁ h)# i₁ , (f # +₁ h)# i₂ ] ≈⟨ []-cong₂ left right
[ [ (idC +₁ i₁) f , i₂ h ] # i₁ , [ (idC +₁ i₁) f , i₂ h ] # i₂ ] ≈⟨ +-g-η
([ (idC +₁ i₁) f , i₂ h ] #)
; #-resp-≈ = #-resp-≈
}
where
open Guarded-Elgot-Algebra gea
open HomReasoning
open Equiv
left : {X Y} {f : X A + X} {h : Y X + Y}
(f # +₁ h)# i₁ [ (idC +₁ i₁) f , i₂ h ] # i₁
left {X} {Y} {f} {h} = begin
(f # +₁ h)# i₁ ≈⟨ #-Fixpoint ⟩∘⟨refl
([ idC , idC (((f #) +₁ h) #) ] ((f #) +₁ h)) i₁ ≈⟨ pullʳ +₁∘i₁
[ idC , idC (((f #) +₁ h) #) ] (i₁ f #) ≈⟨ cancelˡ inject₁
(f #) ≈⟨ #-Uniformity {f = f}
{g = [ (idC +₁ i₁) f , i₂ h ]}
{h = i₁}
(sym inject₁)
([ (idC +₁ i₁) f , i₂ h ] # i₁)
byUni : {X Y} {f : X A + X} {h : Y X + Y}
(idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ] [ (idC +₁ i₁) f , i₂ h ] [ i₁ , h ]
byUni {X} {Y} {f} {h} = begin
(idC +₁ [ i₁ , h ])
[ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ] ≈⟨ ∘-resp-≈ʳ (trans ∘[] ([]-congʳ inject₁))
(idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f
, [ (idC +₁ i₁) f , i₂ i₂ ] h ] ≈⟨ ∘[]
[ (idC +₁ [ i₁ , h ]) ((idC +₁ i₁) f)
, (idC +₁ [ i₁ , h ]) ([ (idC +₁ i₁) f , i₂ i₂ ] h) ] ≈⟨ []-cong₂ sym-assoc sym-assoc
[ ((idC +₁ [ i₁ , h ]) (idC +₁ i₁)) f
, ((idC +₁ [ i₁ , h ]) [ (idC +₁ i₁) f , i₂ i₂ ]) h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ ∘[])
[ ((idC idC) +₁ ([ i₁ , h ] i₁)) f
, [ (idC +₁ [ i₁ , h ]) ((idC +₁ i₁) f)
, (idC +₁ [ i₁ , h ]) (i₂ i₂) ] h ] ≈⟨ []-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² (inject₁)))
(∘-resp-≈ˡ ([]-cong₂ sym-assoc sym-assoc))
[ (idC +₁ i₁) f
, [ ((idC +₁ [ i₁ , h ]) (idC +₁ i₁)) f
, ((idC +₁ [ i₁ , h ]) i₂) i₂ ] h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ inject₂)))
[ (idC +₁ i₁) f
, [ ((idC idC) +₁ ([ i₁ , h ] i₁)) f
, (i₂ [ i₁ , h ]) i₂ ] h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identity² inject₁)) assoc))
[ (idC +₁ i₁) f
, [ (idC +₁ i₁) f
, i₂ ([ i₁ , h ] i₂) ] h ] ≈⟨ []-congˡ (∘-resp-≈ˡ ([]-congˡ (∘-resp-≈ʳ inject₂)))
[ (idC +₁ i₁) f , [ (idC +₁ i₁) f , i₂ h ] h ] ≈˘⟨ []-congʳ inject₁
[ [ (idC +₁ i₁) f , i₂ h ] i₁
, [ (idC +₁ i₁) f , i₂ h ] h ] ≈˘⟨ ∘[]
[ (idC +₁ i₁) f , i₂ h ] [ i₁ , h ]
right : {X Y} {f : X A + X} {h : Y X + Y}
(f # +₁ h)# i₂ [ (idC +₁ i₁) f , i₂ h ] # i₂
right {X} {Y} {f} {h} = begin
(f # +₁ h)# i₂ ≈⟨ ∘-resp-≈ˡ #-Fixpoint
([ idC , idC (((f #) +₁ h) #) ] ((f #) +₁ h)) i₂ ≈⟨ pullʳ +₁∘i₂
[ idC , idC (((f #) +₁ h) #) ] i₂ h ≈⟨ pullˡ inject₂
(idC (((f #) +₁ h) #)) h ≈⟨ (identityˡ ⟩∘⟨refl)
((f #) +₁ h) # h ≈˘⟨ #-Uniformity {f = ((f #) +₁ idC) h}
{g = (f #) +₁ h}
{h = h}
(pullˡ (trans (+₁∘+₁) (+₁-cong₂ identityˡ identityʳ)))
(((f #) +₁ idC) h) # ≈⟨ #-Compositionality
(([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂) ≈⟨ ∘-resp-≈ˡ (#-Uniformity {f = [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ]}
{g = [ (idC +₁ i₁) f , i₂ h ]}
{h = [ i₁ , h ]}
byUni)
([ (idC +₁ i₁) f , i₂ h ] # [ i₁ , h ]) i₂ ≈⟨ pullʳ inject₂
[ (idC +₁ i₁) f , i₂ h ] # h ≈˘⟨ inject₂ ⟩∘⟨refl
([ idC , [ (idC +₁ i₁) f , i₂ h ] # ] i₂) h ≈˘⟨ pushʳ inject₂
[ idC , [ (idC +₁ i₁) f , i₂ h ] # ]
([ (idC +₁ i₁) f , i₂ h ] i₂) ≈˘⟨ []-congˡ identityˡ ⟩∘⟨refl
[ idC , idC [ (idC +₁ i₁) f , i₂ h ] # ]
([ (idC +₁ i₁) f , i₂ h ] i₂) ≈˘⟨ pushˡ #-Fixpoint
[ (idC +₁ i₁) f , i₂ h ] # i₂