bsc-leon-vatthauer/slides/sections/01_abstracting.tex

233 lines
9.2 KiB
TeX
Raw Normal View History

2024-01-11 13:38:32 +01:00
\section{Categorical Notions of Partiality}
2024-01-14 18:12:29 +01:00
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{Moggi's categorical semantics~\cite{moggi}}
Goal: interpret an effectul programming language in a category $\mathcal{C}$
2024-01-11 13:38:32 +01:00
\begin{itemize}
2024-01-15 14:08:42 +01:00
\item<2-> Take a Monad $T$ on $\mathcal{C}$, then values are denoted by objects $A$ and computations by $TA$
2024-01-14 18:12:29 +01:00
\item<3-> Programs form a category $\mathcal{C}_T$ with $\mathcal{C}_T(X,Y) := \mathcal{C}(X, TY)$
\end{itemize}
2024-01-11 13:38:32 +01:00
2024-01-14 18:12:29 +01:00
\onslide<4->
2024-01-18 19:10:09 +01:00
What properties should a monad $T$ for modelling partiality have?
2024-01-11 13:38:32 +01:00
2024-01-14 18:12:29 +01:00
\begin{enumerate}
2024-01-19 14:04:41 +01:00
\item<5-> Commutativity (also entails strength)
% , i.e. the following programs should yield equal results:
% \begin{multicols}{2}
% \begin{minted}{haskell}
% do x <- p
% y <- q
% return (x, y)
% \end{minted}
2024-01-14 18:12:29 +01:00
2024-01-19 14:04:41 +01:00
% \begin{minted}{haskell}
% do y <- q
% x <- p
% return (x, y)
% \end{minted}
% \end{multicols}
% where p and q are programs.
2024-01-18 19:10:09 +01:00
\item<6-> Morphisms in $\mathcal{C}_T$ should be partial maps
\item<7-> There should be no other effect besides partiality
2024-01-14 18:12:29 +01:00
\end{enumerate}
\end{frame}
2024-01-19 14:04:41 +01:00
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{Preliminaries}
We work in category $\mathcal{C}$ that
\begin{itemize}
\item has finite products
\item has finite coproducts
\item is distributive, i.e. the following is an iso:
% https://q.uiver.app/#q=WzAsMixbMCwwLCIoWCBcXHRpbWVzIFkpICsgKFggXFx0aW1lcyBaKSJdLFs0LDAsIlggXFx0aW1lcyAoWSArIFopIl0sWzAsMSwiZHN0bF57LTF9ICA6PSBbIFxcbGFuZ2xlIGlkICwgaW5sIFxccmFuZ2xlICwgXFxsYW5nbGUgaWQgLCBpbnIgXFxyYW5nbGVdIl1d
\[\begin{tikzcd}
{(X \times Y) + (X \times Z)} &&&& {X \times (Y + Z)}
\arrow["{dstl^{-1} := [ \langle id , inl \rangle , \langle id , inr \rangle]}", from=1-1, to=1-5]
\end{tikzcd}\]
% https://q.uiver.app/#q=WzAsMixbMCwwLCJYIFxcdGltZXMgKFkgKyBaKSJdLFs0LDAsIihYIFxcdGltZXMgWSkgKyAoWCBcXHRpbWVzIFopIl0sWzAsMSwiZHN0bCJdXQ==
\[\begin{tikzcd}
{X \times (Y + Z)} &&&& {(X \times Y) + (X \times Z)}
\arrow["dstl", from=1-1, to=1-5]
\end{tikzcd}\]
\end{itemize}
\end{frame}
2024-01-15 14:08:42 +01:00
\newcommand{\tdom}{\text{dom}\;}
2024-01-14 18:12:29 +01:00
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{Restriction Categories~\cite{restriction}}
\begin{definition}<1->
A restriction structure on $\mathcal{C}$ is a mapping $\tdom : \mathcal{C}(X,Y) \rightarrow \mathcal{C}(X,X)$ with the following properties:
\begin{alignat}{1}
f \circ (\tdom f) &= f\\
(\tdom f) \circ (\tdom g) &= (\tdom g) \circ (\tdom f)\\
\tdom(g \circ (\tdom f)) &= (\tdom g) \circ (\tdom f)\\
(\tdom h) \circ f &= f \circ \tdom (h \circ f)
\end{alignat}
for any $X, Y, Z \in \vert\mathcal{C}\vert, f : X \rightarrow KY, g : X \rightarrow KZ, h: Y \rightarrow KZ$.
\end{definition}
2024-01-15 14:08:42 +01:00
\onslide<2->
2024-01-19 14:04:41 +01:00
Intuitively $\tdom f$ captures the domain of definedness of $f$.
2024-01-14 18:12:29 +01:00
2024-01-15 14:08:42 +01:00
\begin{block}{Remark}<3->
2024-01-14 18:12:29 +01:00
Every category has a trivial restriction structure $\tdom f = id$, we call categories with a non-trivial restriction structure \textit{restriction categories}.
\end{block}
\end{frame}
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{Equational Lifting Monads~\cite{eqlm}}
2024-01-18 19:10:09 +01:00
The following criterion guarantees that some form of partiality is the only possible side-effect:
2024-01-15 14:08:42 +01:00
\pause
2024-01-14 18:12:29 +01:00
\begin{definition}
A commutative monad $T$ is called an \textit{equational lifting monad} if the following diagram commutes:
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJUWCJdLFsyLDAsIlRYIFxcdGltZXMgVFgiXSxbMiwyLCJUKFRYIFxcdGltZXMgWCkiXSxbMCwxLCJcXERlbHRhIl0sWzEsMiwiXFx0YXUiXSxbMCwyLCJUIFxcbGFuZ2xlIFxcZXRhICwgaWQgXFxyYW5nbGUiLDJdXQ==
\[\begin{tikzcd}
TX && {TX \times TX} \\
\\
&& {T(TX \times X)}
\arrow["\Delta", from=1-1, to=1-3]
\arrow["\tau", from=1-3, to=3-3]
\arrow["{T \langle \eta , id \rangle}"', from=1-1, to=3-3]
\end{tikzcd}\]
\end{definition}
\pause
\begin{theorem}
The Kleisli category of an equational lifting monad is a restriction category.
\end{theorem}
2024-01-11 13:38:32 +01:00
\end{frame}
2024-01-18 19:10:09 +01:00
% write on board:
% equational lifting: do x <- p; return (return x, x) = do x <- p; return (p, x)
2024-01-14 18:12:29 +01:00
2024-01-19 14:04:41 +01:00
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{The Maybe Monad}
2024-01-15 14:08:42 +01:00
\begin{itemize}[<+->]
\item $MX = X + 1$
\item on a distributive category the maybe monad is strong and commutative:
\[ \tau_{X,Y} := X \times (Y + 1) \overset{dstr}{\longrightarrow} (X \times Y) + (X \times 1) \overset{id+1}{\longrightarrow} (X \times Y) + 1 \]
2024-01-18 19:10:09 +01:00
\item and the following diagram commutes (i.e. it is an equational lifting monad):
2024-01-15 14:08:42 +01:00
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJYKzEiXSxbMywwLCIoWCsxKVxcdGltZXMoWCsxKSJdLFszLDIsIigoWCsxKVxcdGltZXMgWCkgKygoWCsxKVxcdGltZXMgMSkiXSxbMyw0LCIoKFgrMSlcXHRpbWVzIFgpKzEiXSxbMCwxLCJcXERlbHRhIl0sWzEsMiwiZHN0ciJdLFsyLDMsImlkKyEiXSxbMCwzLCJcXGxhbmdsZSBpbmwsaWRcXHJhbmdsZSArICEiLDJdXQ==
\[\begin{tikzcd}
{X+1} &&& {(X+1)\times(X+1)} \\
\\
&&& {((X+1)\times X) +((X+1)\times 1)} \\
\\
&&& {((X+1)\times X)+1}
\arrow["\Delta", from=1-1, to=1-4]
\arrow["dstr", from=1-4, to=3-4]
\arrow["{id+!}", from=3-4, to=5-4]
\arrow["{\langle inl,id\rangle + !}"', from=1-1, to=5-4]
\end{tikzcd}\]
2024-01-11 13:38:32 +01:00
\end{itemize}
\end{frame}
2024-01-19 14:04:41 +01:00
\begin{frame}[t, fragile]{Capturing Partiality Categorically}{Capretta's Delay Monad~\cite{delay}}
2024-01-18 19:10:09 +01:00
\begin{itemize}[<+->]
2024-01-15 14:08:42 +01:00
\item Recall the delay codatatype:
\[\mprset{fraction={===}}
2024-01-18 19:10:09 +01:00
\inferrule {x : X} {now\; x : DX}\hskip 2cm
2024-01-15 14:08:42 +01:00
\inferrule {c : DX} {later\; c : DX}\]
2024-01-18 19:10:09 +01:00
\item Categorically: $DX = \nu A. X + A$
\item By Lambek we get $DX \cong X + DX$ which yields:
\begin{alignat*}{2}
&out &&: DX \rightarrow X + DX\\
&out^{-1} &&: X + DX \rightarrow DX = [ now , later ]
\end{alignat*}
2024-01-15 14:08:42 +01:00
\item $D$ (if it exists) is a strong and commutative monad (on a cartesian, cocartesian, distributive category)
2024-01-18 19:10:09 +01:00
\item $D$ is not an equational lifting monad, because besides modelling partiality, it also counts steps \\(e.g. $now\; c \not= later\; (now\; c)$)
2024-01-11 13:38:32 +01:00
\end{itemize}
\end{frame}
2024-01-18 19:10:09 +01:00
% write on board:
% \eta = now
% given f : X \rightarrow TY, f* is defined by corecursion.
%%%%%%%%
% NOTE:
% quotienting D should be covered later in the agda chapter, not here!
% \begin{frame}[t, fragile]{The quotiented Delay Monad}
% Following the work in~\cite{quotienting} we quotient $D$ by weak bisimilarity:
% \[\mprset{fraction={===}}
% \inferrule {p \downarrow c \\ q \downarrow c} {p \approx q}\hskip 2cm
% \inferrule {p \approx q} {later\; p \approx later\; q}\]
% \end{frame}
%%%%%%%
2024-01-19 14:04:41 +01:00
\begin{frame}[t, fragile]{Partiality from Iteration}{Elgot Algebras~\cite{elgotalgebras}}
2024-01-18 19:10:09 +01:00
The following is an adaptation of Ad\'amek, Milius and Velebil's \textit{complete Elgot Algebras}:
\begin{definition}
A (unguarded) Elgot Algebra consists of:
\begin{itemize}
\item An object X
\item for every $f : S \rightarrow X + S$ the iteration $f^\# : S \rightarrow X$, satisfying:
\begin{itemize}
\item \textbf{Fixpoint}: $f^\# = [ id , f ^\# ] \circ f$
\item \textbf{Uniformity}: $(id + h) \circ f = g \circ h \Rightarrow f ^\# = g^\# \circ h$
\\ for $f : S \rightarrow X + S,\; g : R \rightarrow A + R,\; h : S \rightarrow R$
\item \textbf{Folding}: $((f^\# + id) \circ h)^\# = [ (id + inl) \circ f , inr \circ h ] ^\#$
\\ for $f : S \rightarrow A + S,\; h : R \rightarrow S + R$
\end{itemize}
\end{itemize}
\end{definition}
\pause
\begin{block}{Remark}
Every Elgot algebra $(A, (-)^\#)$ comes with a divergence constant $\bot = (inr : 1 \rightarrow A + 1)^\# : 1 \rightarrow A$
\end{block}
\end{frame}
2024-01-19 14:04:41 +01:00
\begin{frame}[t, fragile]{Partiality from Iteration}{Elgot Monads~\cite{elgotmonad}}
Recall the following notion:
\begin{definition}
A monad $\mathbf{T}$ is an Elgot monad if it has an iteration operator $(f : X \rightarrow T(Y + X))^\dagger : X \rightarrow TY$ satisfying:
\begin{itemize}
\item \textbf{Fixpoint}:
\item \textbf{Naturality}:
\item \textbf{Codiagonal}:
\item \textbf{Uniformity}:
\end{itemize}
\end{definition}
\begin{block}{Remark}
Strong Elgot Monads are regarded as minimal semantic structures for interpreting effectful while-languages.
\end{block}
\end{frame}
2024-01-18 19:10:09 +01:00
% TODO
% maybe dont talk about elgot monads at all, give intuition for the initial pre Elgot monad.
2024-01-19 14:04:41 +01:00
\begin{frame}[t, fragile]{Partiality from Iteration}{pre-Elgot Monads~\cite{uniformelgot}}
Relaxing the requirements for Elgot monads we get the following weaker concept:
\begin{definition}
A monad $\mathbf{T}$ is called pre-Elgot if every $TX$ extends to an Elgot algebra such that Kleisli lifting is iteration preversing, i.e.
\[h^* \circ f^\# = ((h^* + id) \circ f)^\#\qquad \text{for}\; f : Z \rightarrow TX + Z, h : X \rightarrow TY\]
\end{definition}
\begin{theorem}
Every Elgot monad is pre-Elgot
\end{theorem}
2024-01-18 19:10:09 +01:00
\end{frame}
2024-01-19 14:04:41 +01:00
\begin{frame}[t, fragile]{Partiality from iteration}{The initial pre-Elgot Monad~\cite{uniformelgot}}
2024-01-18 19:10:09 +01:00
\begin{itemize}[<+->]
\item By defining $KX$ as the free Elgot algebra over $X$ we get a monad $K$
\item $K$ is strong and commutative
\item $K$ is an equational lifting monad
\item $K$ is the initial pre-Elgot monad
\end{itemize}
\end{frame}
2024-01-19 14:04:41 +01:00
\begin{frame}[t, fragile]{Partiality from iteration}{Closing the gap}
...
\end{frame}
2024-01-18 19:10:09 +01:00
%% TODOs:
% cite stefan
% cite sergey