bsc-leon-vatthauer/Monad/Instance/Delay.lagda.md

91 lines
3.1 KiB
Markdown
Raw Normal View History

2023-08-19 12:15:34 +02:00
---
title: Delay Monad
author: Leon Vatthauer
format: pdf
output:
pdf_document:
md_extensions: +task-lists
mainfont: DejaVu Serif
monofont: mononoki
geometry: margin=0.5cm
header-includes:
- \usepackage{fvextra}
- \DefineVerbatimEnvironment{Highlighting}{Verbatim}{breaklines,commandchars=\\\{\}}
---
<!--
```agda
2023-08-16 14:54:50 +02:00
open import Level
open import Categories.Category.Core
open import Categories.Category.Distributive
open import Categories.Category.Extensive.Bundle
open import Categories.Category.Extensive
open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian
open import Categories.Category.Cartesian
open import Categories.Object.Terminal
open import Categories.Category.Construction.F-Coalgebras
open import Categories.Functor.Coalgebra
open import Categories.Functor
open import Categories.Monad.Construction.Kleisli
import Categories.Morphism as M
import Categories.Morphism.Reasoning as MR
2023-08-19 12:15:34 +02:00
```
-->
2023-08-16 14:54:50 +02:00
2023-08-19 12:15:34 +02:00
```agda
2023-08-16 14:54:50 +02:00
module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
open Cocartesian (Extensive.cocartesian extensive)
open Cartesian (ExtensiveDistributiveCategory.cartesian ED)
open BinaryProducts products
open M C
open MR C
open Equiv
open HomReasoning
-- Proposition 1
record DelayMonad (D : Endofunctor C) : Set (o ⊔ ⊔ e) where
open Functor D using () renaming (F₀ to D₀; F₁ to D₁)
field
now : ∀ {X} → X ⇒ D₀ X
later : ∀ {X} → D₀ X ⇒ D₀ X
isIso : ∀ {X} → IsIso [ now {X} , later {X} ]
out : ∀ {X} → D₀ X ⇒ X + D₀ X
out {X} = IsIso.inv (isIso {X})
field
_* : ∀ {X Y} → X ⇒ D₀ Y → D₀ X ⇒ D₀ Y
*-law : ∀ {X Y} {f : X ⇒ D₀ Y} → out ∘ (f *) ≈ [ out ∘ f , i₂ ∘ (f *) ] ∘ out
*-unique : ∀ {X Y} (f : X ⇒ D₀ Y) (h : D₀ X ⇒ D₀ Y) → h ≈ f *
*-resp-≈ : ∀ {X Y} {f h : X ⇒ D₀ Y} → f ≈ h → f * ≈ h *
unitLaw : ∀ {X} → out {X} ∘ now {X} ≈ i₁
unitLaw = begin
out ∘ now ≈⟨ refl⟩∘⟨ sym inject₁ ⟩
out ∘ [ now , later ] ∘ i₁ ≈⟨ cancelˡ (IsIso.isoˡ isIso) ⟩
i₁ ∎
toMonad : KleisliTriple C
toMonad = record
{ F₀ = D₀
; unit = now
; extend = _*
; identityʳ = λ {X} {Y} {k} → begin
k * ∘ now ≈⟨ introˡ (IsIso.isoʳ isIso) ⟩∘⟨refl ⟩
(([ now , later ] ∘ out) ∘ k *) ∘ now ≈⟨ pullʳ *-law ⟩∘⟨refl ⟩
([ now , later ] ∘ [ out ∘ k , i₂ ∘ (k *) ] ∘ out) ∘ now ≈⟨ pullʳ (pullʳ unitLaw) ⟩
[ now , later ] ∘ [ out ∘ k , i₂ ∘ (k *) ] ∘ i₁ ≈⟨ refl⟩∘⟨ inject₁ ⟩
[ now , later ] ∘ out ∘ k ≈⟨ cancelˡ (IsIso.isoʳ isIso) ⟩
k ∎
; identityˡ = λ {X} → sym (*-unique now idC)
; assoc = λ {X} {Y} {Z} {f} {g} → sym (*-unique ((g *) ∘ f) ((g *) ∘ (f *)))
; sym-assoc = λ {X} {Y} {Z} {f} {g} → *-unique ((g *) ∘ f) ((g *) ∘ (f *))
; extend-≈ = *-resp-≈
2023-08-19 12:15:34 +02:00
}
-- record Search
```