Finish delayMonad proofs without musical notation

This commit is contained in:
Leon Vatthauer 2024-01-05 17:51:20 +01:00
parent 197d036d42
commit 32c479a027
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8

View file

@ -8,7 +8,10 @@ open import Data.Sum using (_⊎_; inj₁; inj₂)
import Relation.Binary.PropositionalEquality as Eq import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_) open Eq using (_≡_)
open import Function.Inverse as Inv using (_↔_; Inverse; inverse) open import Function.Inverse as Inv using (_↔_; Inverse; inverse)
open import Function using (id)
open import Categories.Monad
open import Categories.Category.Instance.Setoids
open import Categories.NaturalTransformation hiding (id)
module Monad.Instance.K.Instance.D {c } where module Monad.Instance.K.Instance.D {c } where
@ -107,7 +110,7 @@ module Bisimilarity (A : Setoid c (c ⊔ )) where
force (-trans xy yz) = -trans (force xy) (force yz) force (-trans xy yz) = -trans (force xy) (force yz)
data _↓_ : Delay A A → Set (c ⊔ ) where data _↓_ : Delay A A → Set (c ⊔ ) where
now↓ : ∀ {x y} → [ A ][ x ≡ y ] → now x ↓ y now↓ : ∀ {x y} (x≡y : [ A ][ x ≡ y ]) → now x ↓ y
later↓ : ∀ {x y} (x↓y : (force x) ↓ y) → later x ↓ y later↓ : ∀ {x y} (x↓y : (force x) ↓ y) → later x ↓ y
unique↓ : ∀ {a : Delay A } {x y : A } → a ↓ x → a ↓ y → [ A ][ x ≡ y ] unique↓ : ∀ {a : Delay A } {x y : A } → a ↓ x → a ↓ y → [ A ][ x ≡ y ]
@ -210,9 +213,6 @@ module DelayMonad where
now-cong : ∀ {A : Setoid c (c ⊔ )} {x y : A } → [ A ][ x ≡ y ] → [ A ][ now x ≈ now y ] now-cong : ∀ {A : Setoid c (c ⊔ )} {x y : A } → [ A ][ x ≡ y ] → [ A ][ now x ≈ now y ]
now-cong {A} {x} {y} x≡y = ↓≈ x≡y (now↓ (≡-refl A)) (now↓ (≡-refl A)) now-cong {A} {x} {y} x≡y = ↓≈ x≡y (now↓ (≡-refl A)) (now↓ (≡-refl A))
η : ∀ (A : Setoid c (c ⊔ )) → A ⟶ Delayₛ A
η A = record { _⟨$⟩_ = now ; cong = now-cong }
now-inj : ∀ {A : Setoid c (c ⊔ )} {x y : A } → [ A ][ now x ≈ now y ] → [ A ][ x ≡ y ] now-inj : ∀ {A : Setoid c (c ⊔ )} {x y : A } → [ A ][ now x ≈ now y ] → [ A ][ x ≡ y ]
now-inj {A} {x} {y} (↓≈ a≡b (now↓ x≡a) (now↓ y≡b)) = ≡-trans A x≡a (≡-trans A a≡b (≡-sym A y≡b)) now-inj {A} {x} {y} (↓≈ a≡b (now↓ x≡a) (now↓ y≡b)) = ≡-trans A x≡a (≡-trans A a≡b (≡-sym A y≡b))
@ -220,12 +220,133 @@ module DelayMonad where
_≋_ : ∀ {c' '} {A B : Setoid c' '} → A ⟶ B → A ⟶ B → Set (c' ⊔ ') _≋_ : ∀ {c' '} {A B : Setoid c' '} → A ⟶ B → A ⟶ B → Set (c' ⊔ ')
_≋_ {c'} {'} {A} {B} f g = Setoid._≈_ (A ⇨ B) f g _≋_ {c'} {'} {A} {B} f g = Setoid._≈_ (A ⇨ B) f g
-- later-eq : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } {y : Delay A } → [ A ][ later x ≈ y ] → [ A ][ force x ≈ y ] later-self : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } → [ A ][ force x ≈ later x ]
later-self {A} {x} with force x in eqx
... | now y = ↓≈ (≡-refl A) (now↓ (≡-refl A)) (later↓ helper)
where
helper : [ A ][ force x ↓ y ]
helper rewrite eqx = now↓ (≡-refl A)
... | later y = later≈ helper
where
helper : [ A ][ force y ≈′ force x ]
force≈ (helper) rewrite eqx = later-self {x = y}
later-eq : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } {y : Delay A } → [ A ][ later x ≈ y ] → [ A ][ force x ≈ y ]
-- later-eq : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } {y : Delay A } → [ A ][ later x ≈′ y ] → [ A ][ force x ≈′ y ] -- later-eq : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } {y : Delay A } → [ A ][ later x ≈′ y ] → [ A ][ force x ≈′ y ]
-- force≈ (later-eq {A} {x} {y} x≈y) = later-eq (force≈ x≈y) -- force≈ (later-eq {A} {x} {y} x≈y) = later-eq (force≈ x≈y)
-- later-eq {A} {x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ a≡b x↓a (now↓ y≡b) later-eq {A} {x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ a≡b x↓a (now↓ y≡b)
-- later-eq {A} {x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = ↓≈ a≡b x↓a (later↓ y↓b) later-eq {A} {x} {later y} x≈ly = ≈-trans A later-self x≈ly
-- later-eq {A} {x} {later y} (later≈ x≈y) with force x
-- ... | now a = {! !} lift-id : ∀ {A : Setoid c (c ⊔ )} → (liftFₛ idₛ) ≋ (idₛ {A = Delayₛ A})
-- ... | later a = later≈ (later-eq x≈y) lift-id : ∀ {A : Setoid c (c ⊔ )} {x y : Delay A } → [ A ][ x ≈′ y ] → [ A ][ (liftF id) x ≈′ id y ]
lift-id {A} {now x} {y} x≈y = x≈y
lift-id {A} {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ x≡b)) = ↓≈ a≡b (lift↓ idₛ (later↓ x↓a)) (now↓ x≡b)
lift-id {A} {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (lift-id (≈→≈′ A (↓≈ a≡b x↓a y↓b)))
lift-id {A} {later x} {.(later _)} (later≈ x≈y) = later≈ (lift-id x≈y)
force≈ (lift-id {A} {x} {y} x≈y) = lift-id (force≈ x≈y)
lift-comp : ∀ {A B C : Setoid c (c ⊔ )} {f : A ⟶ B} {g : B ⟶ C} → liftFₛ (g ∘ f) ≋ (liftFₛ g ∘ liftFₛ f)
lift-comp : ∀ {A B C : Setoid c (c ⊔ )} {f : A ⟶ B} {g : B ⟶ C} {x y : Delay A } → [ A ][ x ≈′ y ] → [ C ][ liftFₛ (g ∘ f) ⟨$⟩ x ≈′ (liftFₛ g ∘ liftFₛ f) ⟨$⟩ y ]
force≈ (lift-comp {A} {B} {C} {f} {g} {x} {y} x≈y) = lift-comp {A} {B} {C} {f} {g} (force≈ x≈y)
lift-comp {A} {B} {C} {f} {g} {now x} {now y} (↓≈ a≡b (now↓ x≡a) (now↓ y≡b)) = now-cong (cong g (cong f (≡-trans A x≡a (≡-trans A a≡b (≡-sym A y≡b)))))
lift-comp {A} {B} {C} {f} {g} {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ↓≈ (cong g (cong f a≡b)) (now↓ (cong g (cong f (x≡a)))) (later↓ (lift↓ g (lift↓ f y↓b)))
lift-comp {A} {B} {C} {f} {g} {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ (cong g (cong f a≡b)) (later↓ (lift↓ (g ∘ f) x↓a)) (now↓ (cong g (cong f y≡b)))
lift-comp {A} {B} {C} {f} {g} {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (lift-comp {A} {B} {C} {f} {g} (≈→≈′ A (↓≈ a≡b x↓a y↓b)))
lift-comp {A} {B} {C} {f} {g} {later x} {later y} (later≈ x≈y) = later≈ (lift-comp {A} {B} {C} {f} {g} x≈y)
lift-resp-≈ : ∀ {A B : Setoid c (c ⊔ )} {f g : A ⟶ B} → f ≋ g → liftFₛ f ≋ liftFₛ g
lift-resp-≈′ : ∀ {A B : Setoid c (c ⊔ )} {f g : A ⟶ B} → f ≋ g → ∀ {x y : Delay A } → [ A ][ x ≈′ y ] → [ B ][ liftFₛ f ⟨$⟩ x ≈′ liftFₛ g ⟨$⟩ y ]
lift-resp-≈ {A} {B} {f} {g} f≋g {now x} {now y} x≈y = now-cong (f≋g (now-inj x≈y))
lift-resp-≈ {A} {B} {f} {g} f≋g {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ↓≈ (f≋g a≡b) (now↓ (cong f x≡a)) (later↓ (lift↓ g y↓b))
lift-resp-≈ {A} {B} {f} {g} f≋g {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ (f≋g a≡b) (later↓ (lift↓ f x↓a)) (now↓ (cong g y≡b))
lift-resp-≈ {A} {B} {f} {g} f≋g {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (lift-resp-≈′ {A} {B} {f} {g} f≋g (≈→≈′ A (↓≈ a≡b x↓a y↓b)))
lift-resp-≈ {A} {B} {f} {g} f≋g {later x} {later y} (later≈ x≈y) = later≈ (lift-resp-≈′ {A} {B} {f} {g} f≋g x≈y)
force≈ (lift-resp-≈′ {A} {B} {f} {g} f≋g {x} {y} x≈y) = lift-resp-≈ {A} {B} {f} {g} f≋g (force≈ x≈y)
ηₛ : ∀ (A : Setoid c (c ⊔ )) → A ⟶ Delayₛ A
ηₛ A = record { _⟨$⟩_ = now ; cong = now-cong }
η-natural : ∀ {A B : Setoid c (c ⊔ )} (f : A ⟶ B) → (ηₛ B ∘ f) ≋ (liftFₛ f ∘ ηₛ A)
η-natural {A} {B} f {x} {y} x≈y = now-cong (cong f x≈y)
μ : ∀ {A : Setoid c (c ⊔ )} → Delay (Delay A ) → Delay A
μ′ : ∀ {A : Setoid c (c ⊔ )} → Delay (Delay A ) → Delay A
force (μ′ {A} x) = μ {A} (force x)
μ {A} (now x) = x
μ {A} (later x) = later (μ′ {A} x)
μ↓-trans : ∀ {A : Setoid c (c ⊔ )} {x : Delay (Delay A )} {y : Delay A } {b : A } → [ Delayₛ A ][ x ↓ y ] → [ A ][ y ↓ b ] → [ A ][ (μ {A} x) ↓ b ]
μ↓-trans {A} {now x} {y} {b} (now↓ x≡y) y↓b = ≈↓ A (≈-sym A x≡y) y↓b
μ↓-trans {A} {later x} {now y} {b} (later↓ x↓y) (now↓ y≡b) = later↓ (μ↓-trans x↓y (now↓ y≡b))
μ↓-trans {A} {later x} {later y} {b} (later↓ x↓y) (later↓ y↓b) = later↓ (μ↓-trans (≡↓ (Delayₛ A) (≈-sym A later-self) x↓y) y↓b)
μ↓ : ∀ {A : Setoid c (c ⊔ )} {x : Delay (Delay A )} {y : Delay A } → [ Delayₛ A ][ x ↓ y ] → [ A ][ (μ {A} x) ≈ y ]
μ↓′ : ∀ {A : Setoid c (c ⊔ )} {x : Delay (Delay A )} {y : Delay A } → [ Delayₛ A ][ x ↓ y ] → [ A ][ (μ {A} x) ≈′ y ]
force≈ (μ↓′ {A} {x} {y} x↓y) = μ↓ x↓y
μ↓ {A} {now x} {y} (now↓ x≡y) = x≡y
μ↓ {A} {later x} {now y} (later↓ x↓y) = ≈-trans A (≈-sym A later-self) (↓≈ (≡-refl A) (μ↓-trans x↓y (now↓ (≡-refl A))) (now↓ (≡-refl A)))
μ↓ {A} {later x} {later y} (later↓ x↓y) = later≈ (μ↓′ {A} {force x} {force y} (≡↓ (Delayₛ A) (≈-sym A later-self) x↓y))
μ-cong : ∀ (A : Setoid c (c ⊔ )) {x y : Delay (Delay A )} → [ Delayₛ A ][ x ≈ y ] → [ A ][ μ {A} x ≈ μ {A} y ]
μ-cong : ∀ (A : Setoid c (c ⊔ )) {x y : Delay (Delay A )} → [ Delayₛ A ][ x ≈′ y ] → [ A ][ μ {A} x ≈′ μ {A} y ]
μ-cong A {now x} {now y} x≈y = now-inj x≈y
μ-cong A {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ≈-trans A (≈-sym A (μ↓ (≡↓ (Delayₛ A) (≈-trans A (≈-sym A a≡b) (≈-sym A x≡a)) y↓b))) later-self
μ-cong A {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ≈-trans A (≈-sym A later-self) (μ↓ (≡↓ (Delayₛ A) (≈-trans A a≡b (≈-sym A y≡b)) x↓a))
μ-cong A {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (μ-cong A (≈→≈′ (Delayₛ A) (↓≈ a≡b x↓a y↓b)))
μ-cong A {later x} {later y} (later≈ x≈y) = later≈ (μ-cong A x≈y)
force≈ (μ-cong A {x} {y} x≈y) = μ-cong A (force≈ x≈y)
μₛ : ∀ (A : Setoid c (c ⊔ )) → Delayₛ (Delayₛ A) ⟶ Delayₛ A
μₛ A = record { _⟨$⟩_ = μ {A} ; cong = μ-cong A }
μ-natural : ∀ {A B : Setoid c (c ⊔ )} (f : A ⟶ B) → (μₛ B ∘ liftFₛ (liftFₛ f)) ≋ (liftFₛ f ∘ μₛ A)
μ-natural : ∀ {A B : Setoid c (c ⊔ )} (f : A ⟶ B) → ∀ {x y : Delay (Delay A )} → [ Delayₛ A ][ x ≈′ y ] → [ B ][ (μₛ B ∘ liftFₛ (liftFₛ f)) ⟨$⟩ x ≈′ (liftFₛ f ∘ μₛ A) ⟨$⟩ y ]
force≈ (μ-natural {A} {B} f {x} {y} x≈y) = μ-natural f (force≈ x≈y)
μ-natural {A} {B} f {now x} {now y} x≈y = lift-cong f (now-inj x≈y)
μ-natural {A} {B} f {now x} {later y} (↓≈ a≡b (now↓ x≡a) (later↓ y↓b)) = ≈-trans B (lift-cong f (≈-sym A (μ↓ (≡↓ (Delayₛ A) (≈-sym A (≈-trans A x≡a a≡b)) y↓b)))) later-self
μ-natural {A} {B} f {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ x≡y)) = ≈-trans B (≈-sym B later-self) (μ↓ (lift↓ (liftFₛ f) (≡↓ (Delayₛ A) (≈-trans A a≡b (≈-sym A x≡y)) x↓a)))
μ-natural {A} {B} f {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (μ-natural f (≈→≈′ (Delayₛ A) (↓≈ a≡b x↓a y↓b)))
μ-natural {A} {B} f {later x} {later y} (later≈ x≈y) = later≈ (μ-natural f x≈y)
μ-assoc' : ∀ {A : Setoid c (c ⊔ )} {x : Delay (Delay (Delay A ))} → [ A ][ (μₛ A ∘ (liftFₛ (μₛ A))) ⟨$⟩ x (μₛ A ∘ μₛ (Delayₛ A)) ⟨$⟩ x ]
μ-assoc' : ∀ {A : Setoid c (c ⊔ )} {x : Delay (Delay (Delay A ))} → [ A ][ (μₛ A ∘ (liftFₛ (μₛ A))) ⟨$⟩ x (μₛ A ∘ μₛ (Delayₛ A)) ⟨$⟩ x ]
force (μ-assoc' {A} {x}) = μ-assoc' {A} {x}
μ-assoc' {A} {now x} = -refl A
μ-assoc' {A} {later x} = later (μ-assoc' {A} {force x})
μ-assoc : ∀ {A : Setoid c (c ⊔ )} → (μₛ A ∘ (liftFₛ (μₛ A))) ≋ (μₛ A ∘ μₛ (Delayₛ A))
μ-assoc {A} {x} {y} x≈y = ≈-trans A (μ-cong A (lift-cong (μₛ A) x≈y)) (∼⇒≈ (μ-assoc' {A} {y}))
identityˡ↓ : ∀ {A : Setoid c (c ⊔ )} {x : Delay A } {y : A } → [ A ][ x ↓ y ] → [ A ][ ((μₛ A) ⟨$⟩ ((liftFₛ (ηₛ A)) ⟨$⟩ x)) ↓ y ]
identityˡ↓ {A} {now x} {y} x↓y = x↓y
identityˡ↓ {A} {later x} {y} (later↓ x↓y) = later↓ (identityˡ↓ x↓y)
identityˡ : ∀ {A : Setoid c (c ⊔ )} → (μₛ A ∘ liftFₛ (ηₛ A)) ≋ idₛ
identityˡ : ∀ {A : Setoid c (c ⊔ )} {x y : Delay A } → [ A ][ x ≈′ y ] → [ A ][ (μₛ A ∘ liftFₛ (ηₛ A)) ⟨$⟩ x ≈′ y ]
force≈ (identityˡ {A} {x} {y} x≈y) = identityˡ (force≈ x≈y)
identityˡ {A} {now x} {y} x≈y = x≈y
identityˡ {A} {later x} {now y} (↓≈ a≡b (later↓ x↓a) (now↓ y≡b)) = ↓≈ a≡b (later↓ (identityˡ↓ x↓a)) (now↓ y≡b)
identityˡ {A} {later x} {later y} (↓≈ a≡b (later↓ x↓a) (later↓ y↓b)) = later≈ (identityˡ (≈→≈′ A (↓≈ a≡b x↓a y↓b)))
identityˡ {A} {later x} {later y} (later≈ x≈y) = later≈ (identityˡ x≈y)
identityʳ : ∀ {A : Setoid c (c ⊔ )} → (μₛ A ∘ ηₛ (Delayₛ A)) ≋ idₛ
identityʳ {A} {now x} {y} x≈y = x≈y
identityʳ {A} {later x} {y} x≈y = x≈y
delayMonad : Monad (Setoids c (c ⊔ ))
delayMonad = record
{ F = record
{ F₀ = Delayₛ
; F₁ = liftFₛ
; identity = lift-id
; homomorphism = λ {X} {Y} {Z} {f} {g} → lift-comp {X} {Y} {Z} {f} {g}
; F-resp-≈ = λ {A} {B} {f} {g} → lift-resp-≈ {A} {B} {f} {g}
}
; η = ntHelper (record { η = ηₛ ; commute = η-natural })
; μ = ntHelper (record { η = μₛ ; commute = μ-natural })
; assoc = μ-assoc
; sym-assoc = λ {A} {x} {y} x≈y → ≈-sym A (μ-assoc (≈-sym (Delayₛ (Delayₛ A)) x≈y))
; identityˡ = identityˡ
; identityʳ = identityʳ
}
``` ```