mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Added K monad
This commit is contained in:
parent
72560dfb59
commit
358b3be4c6
1 changed files with 40 additions and 0 deletions
40
MonadK.agda
Normal file
40
MonadK.agda
Normal file
|
@ -0,0 +1,40 @@
|
|||
open import Level
|
||||
open import Categories.Category.Core
|
||||
open import Categories.Category.Extensive.Bundle
|
||||
open import Function using (id)
|
||||
|
||||
module MonadK {o ℓ e} (D : ExtensiveDistributiveCategory o ℓ e) where
|
||||
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
|
||||
open import UniformIterationAlgebras
|
||||
open import UniformIterationAlgebra
|
||||
open import Categories.FreeObjects.Free
|
||||
open import Categories.Functor.Core
|
||||
open import Categories.Adjoint
|
||||
open import Categories.Adjoint.Properties
|
||||
open import Categories.NaturalTransformation.Core renaming (id to idN)
|
||||
open import Categories.Monad
|
||||
open Equiv
|
||||
|
||||
record MonadK : Set (suc o ⊔ suc ℓ ⊔ suc e) where
|
||||
forgetfulF : Functor (Uniform-Iteration-Algebras D) C
|
||||
forgetfulF = record
|
||||
{ F₀ = λ X → Uniform-Iteration-Algebra.A X
|
||||
; F₁ = λ f → Uniform-Iteration-Algebra-Morphism.h f
|
||||
; identity = refl
|
||||
; homomorphism = refl
|
||||
; F-resp-≈ = id
|
||||
}
|
||||
|
||||
field
|
||||
algebras : ∀ X → FreeObject {C = C} {D = Uniform-Iteration-Algebras D} forgetfulF X
|
||||
|
||||
freeF : Functor C (Uniform-Iteration-Algebras D)
|
||||
freeF = FO⇒Functor forgetfulF algebras
|
||||
|
||||
adjoint : freeF ⊣ forgetfulF
|
||||
adjoint = FO⇒LAdj forgetfulF algebras
|
||||
|
||||
K : Monad C
|
||||
K = adjoint⇒monad adjoint
|
||||
|
||||
-- TODO show that the category of K-Algebras is the category of uniform-iteration algebras
|
Loading…
Reference in a new issue