Last fixes, added comments, summaries and fixed pipeline

This commit is contained in:
Leon Vatthauer 2023-08-19 16:01:48 +02:00
parent a0f370b000
commit 758f5c4ac3
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
6 changed files with 173 additions and 91 deletions

View file

@ -1,17 +1,22 @@
.PHONY: all clean
.PHONY: all clean pandoc
all: Everything.agda
all: agda
make pandoc
pandoc: out/*.md
@$(foreach file,$^, \
pandoc $(file) -s -c Agda.css -o $(file:.md=.html) ; \
)
agda : Everything.agda
agda --html --html-dir=out Everything.agda --html-highlight=auto -i.
pandoc out/MonadK.md -s -c Agda.css -o out/MonadK.html
pandoc out/ElgotAlgebra.md -s -c Agda.css -o out/ElgotAlgebra.html
clean:
rm Everything.agda
rm -rf out/*
open:
firefox out/MonadK.html
firefox out/ElgotAlgebra.html
firefox out/Everything.html
Everything.agda:
git ls-tree --full-tree -r --name-only HEAD | egrep '^src/[^\.]*.l?agda(\.md)?' | sed -e 's|^src/[/]*|import |' -e 's|/|.|g' -e 's/.agda//' -e '/import Everything/d' -e 's/..md//' | LC_COLLATE='C' sort > Everything.agda

View file

@ -1,6 +1,7 @@
<!--
```agda
{-# OPTIONS --allow-unsolved-metas #-}
open import Level
open import Categories.Category.Cocartesian using (Cocartesian)
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.BinaryProducts using (BinaryProducts)
@ -16,7 +17,19 @@ open import Categories.Category.Extensive.Bundle
open import Categories.Category.Extensive
import Categories.Morphism as M
import Categories.Morphism.Reasoning as MR
```
-->
## Summary
This file introduces the category of *unguarded* elgot algebras
- [X] *Definition 7* Category of elgot algebras
- [X] *Lemma 11* Products of elgot algebras
- [ ] *Lemma 11* Exponentials of elgot algebras
## Code
```agda
module ElgotAlgebras where
private
@ -32,10 +45,11 @@ module _ (D : ExtensiveDistributiveCategory o e) where
open MR C
open HomReasoning
open Equiv
```
--*
-- let's define the category of elgot-algebras
--*
### *Definition 7*: Category of elgot algebras
```agda
-- iteration preversing morphism between two elgot-algebras
module _ (E₁ E₂ : Elgot-Algebra D) where
@ -81,21 +95,23 @@ module _ (D : ExtensiveDistributiveCategory o e) where
; ∘-resp-≈ = ∘-resp-≈
}
where open Elgot-Algebra-Morphism
```
--*
-- products and exponentials of elgot-algebras
--*
### *Lemma 11*: Products of elgot algebras
```agda
-- if the carrier contains a terminal, so does elgot-algebras
Terminal-Elgot-Algebras : Terminal C → Terminal Elgot-Algebras
Terminal-Elgot-Algebras T = record
{ = record
{ A =
; _# = λ x → !
; #-Fixpoint = λ {_ f} → !-unique ([ idC , ! ] ∘ f)
; #-Uniformity = λ {_ _ _ _ h} _ → !-unique (! ∘ h)
; #-Folding = refl
; #-resp-≈ = λ _ → refl
; algebra = record
{ _# = λ x → !
; #-Fixpoint = λ {_ f} → !-unique ([ idC , ! ] ∘ f)
; #-Uniformity = λ {_ _ _ _ h} _ → !-unique (! ∘ h)
; #-Folding = refl
; #-resp-≈ = λ _ → refl
}
}
; -is-terminal = record
{ ! = λ {A} → record { h = ! ; preserves = λ {X} {f} → sym (!-unique (! ∘ (A Elgot-Algebra.#) f)) }
@ -109,48 +125,50 @@ module _ (D : ExtensiveDistributiveCategory o e) where
A×B-Helper : ∀ {EA EB : Elgot-Algebra D} → Elgot-Algebra D
A×B-Helper {EA} {EB} = record
{ A = A × B
; _# = λ {X : Obj} (h : X ⇒ A×B + X) → ⟨ ((π₁ +₁ idC) ∘ h)#ᵃ , ((π₂ +₁ idC) ∘ h)#ᵇ ⟩
; #-Fixpoint = λ {X} {f} → begin
⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint ⟩
⟨ [ idC , ((π₁ +₁ idC) ∘ f)#ᵃ ] ∘ ((π₁ +₁ idC) ∘ f) , [ idC , ((π₂ +₁ idC) ∘ f)#ᵇ ] ∘ ((π₂ +₁ idC) ∘ f) ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ []∘+₁) (pullˡ []∘+₁) ⟩
⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] ∘ f , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ∘ f ⟩ ≈˘⟨ ⟨⟩∘ ⟩
(⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ∘ f) ≈⟨ ∘-resp-≈ˡ (unique
(begin
π₁ ∘ ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ≈⟨ project₁ ⟩
[ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₁)) ⟩
[ π₁ ∘ idC , π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩
π₁ ∘ [ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∎)
(begin
π₂ ∘ ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ≈⟨ project₂ ⟩
[ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₂)) ⟩
[ π₂ ∘ idC , π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩
π₂ ∘ [ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∎)
)⟩
([ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∘ f) ∎
; #-Uniformity = λ {X Y f g h} uni → unique
(begin
π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ project₁ ⟩
(((π₁ +₁ idC) ∘ f)#ᵃ) ≈⟨ #ᵃ-Uniformity
(begin
-- TODO factor these out or adjust +₁ swap... maybe call it +₁-id-comm
(idC +₁ h) ∘ (π₁ +₁ idC) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm)) ⟩
(π₁ ∘ idC +₁ idC ∘ h) ∘ f ≈˘⟨ pullˡ +₁∘+₁ ⟩
(π₁ +₁ idC) ∘ (idC +₁ h) ∘ f ≈⟨ pushʳ uni ⟩
((π₁ +₁ idC) ∘ g) ∘ h ∎)⟩
(((π₁ +₁ idC) ∘ g)#ᵃ ∘ h) ≈˘⟨ pullˡ project₁ ⟩
π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ g)#ᵃ , ((π₂ +₁ idC) ∘ g)#ᵇ ⟩ ∘ h ∎)
(begin
π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ project₂ ⟩
((π₂ +₁ idC) ∘ f)#ᵇ ≈⟨ #ᵇ-Uniformity
; algebra = record
{ _# = λ {X : Obj} (h : X ⇒ A×B + X) → ⟨ ((π₁ +₁ idC) ∘ h)#ᵃ , ((π₂ +₁ idC) ∘ h)#ᵇ ⟩
; #-Fixpoint = λ {X} {f} → begin
⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint ⟩
⟨ [ idC , ((π₁ +₁ idC) ∘ f)#ᵃ ] ∘ ((π₁ +₁ idC) ∘ f) , [ idC , ((π₂ +₁ idC) ∘ f)#ᵇ ] ∘ ((π₂ +₁ idC) ∘ f) ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ []∘+₁) (pullˡ []∘+₁) ⟩
⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] ∘ f , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ∘ f ⟩ ≈˘⟨ ⟨⟩∘ ⟩
(⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ∘ f) ≈⟨ ∘-resp-≈ˡ (unique
(begin
(idC +₁ h) ∘ (π₂ +₁ idC) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))⟩
((π₂ ∘ idC +₁ idC ∘ h) ∘ f) ≈˘⟨ pullˡ +₁∘+₁ ⟩
(π₂ +₁ idC) ∘ ((idC +₁ h)) ∘ f ≈⟨ pushʳ uni ⟩
((π₂ +₁ idC) ∘ g) ∘ h ∎)⟩
((π₂ +₁ idC) ∘ g)#ᵇ ∘ h ≈˘⟨ pullˡ project₂ ⟩
π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ g)#ᵃ , ((π₂ +₁ idC) ∘ g)#ᵇ ⟩ ∘ h ∎)
; #-Folding = λ {X} {Y} {f} {h} → ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y})
; #-resp-≈ = λ fg → ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg))
π₁ ∘ ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ≈⟨ project₁ ⟩
[ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₁)) ⟩
[ π₁ ∘ idC , π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩
π₁ ∘ [ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∎)
(begin
π₂ ∘ ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ≈⟨ project₂ ⟩
[ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₂)) ⟩
[ π₂ ∘ idC , π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩
π₂ ∘ [ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∎)
)⟩
([ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∘ f) ∎
; #-Uniformity = λ {X Y f g h} uni → unique
(begin
π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ project₁ ⟩
(((π₁ +₁ idC) ∘ f)#ᵃ) ≈⟨ #ᵃ-Uniformity
(begin
-- TODO factor these out or adjust +₁ swap... maybe call it +₁-id-comm
(idC +₁ h) ∘ (π₁ +₁ idC) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm)) ⟩
(π₁ ∘ idC +₁ idC ∘ h) ∘ f ≈˘⟨ pullˡ +₁∘+₁ ⟩
(π₁ +₁ idC) ∘ (idC +₁ h) ∘ f ≈⟨ pushʳ uni ⟩
((π₁ +₁ idC) ∘ g) ∘ h ∎)⟩
(((π₁ +₁ idC) ∘ g)#ᵃ ∘ h) ≈˘⟨ pullˡ project₁ ⟩
π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ g)#ᵃ , ((π₂ +₁ idC) ∘ g)#ᵇ ⟩ ∘ h ∎)
(begin
π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ project₂ ⟩
((π₂ +₁ idC) ∘ f)#ᵇ ≈⟨ #ᵇ-Uniformity
(begin
(idC +₁ h) ∘ (π₂ +₁ idC) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))⟩
((π₂ ∘ idC +₁ idC ∘ h) ∘ f) ≈˘⟨ pullˡ +₁∘+₁ ⟩
(π₂ +₁ idC) ∘ ((idC +₁ h)) ∘ f ≈⟨ pushʳ uni ⟩
((π₂ +₁ idC) ∘ g) ∘ h ∎)⟩
((π₂ +₁ idC) ∘ g)#ᵇ ∘ h ≈˘⟨ pullˡ project₂ ⟩
π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ g)#ᵃ , ((π₂ +₁ idC) ∘ g)#ᵇ ⟩ ∘ h ∎)
; #-Folding = λ {X} {Y} {f} {h} → ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y})
; #-resp-≈ = λ fg → ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg))
}
}
where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
@ -205,19 +223,26 @@ module _ (D : ExtensiveDistributiveCategory o e) where
{ terminal = Terminal-Elgot-Algebras terminal
; products = record { product = λ {EA EB} → Product-Elgot-Algebras EA EB }
}
```
*Lemma 11*: Exponentials of elgot algebras
```agda
-- if the carriers of the algebra form a exponential, so do the algebras
B^A-Helper : ∀ {EA : Elgot-Algebra D} {X : Obj} → Exponential C X (Elgot-Algebra.A EA) → Elgot-Algebra D
B^A-Helper {EA} {X} exp = record
{ A = A^X
; _# = λ {Z} f → λg product (((((eval +₁ idC) ∘ (Categories.Object.Product.repack C product product' +₁ idC)) ∘ dstl) ∘ (f ⁂ idC)) #ᵃ)
; #-Fixpoint = λ {X} {f} → {! !}
; #-Uniformity = {! !}
; #-Folding = {! !}
; #-resp-≈ = {! !}
; algebra = record
{ _# = λ {Z} f → λg product (((((eval +₁ idC) ∘ (Categories.Object.Product.repack C product product' +₁ idC)) ∘ dstl) ∘ (f ⁂ idC)) #ᵃ)
; #-Fixpoint = {! !}
; #-Uniformity = {! !}
; #-Folding = {! !}
; #-resp-≈ = {! !}
}
}
where
open Exponential exp renaming (B^A to A^X; product to product')
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
dstr = λ {X Y Z} → IsIso.inv (isIsoˡ {X} {Y} {Z})
dstl = λ {X Y Z} → IsIso.inv (isIsoʳ {X} {Y} {Z})
dstl = λ {X Y Z} → IsIso.inv (isIsoʳ {X} {Y} {Z})
```

View file

@ -1,3 +1,7 @@
<!--
```agda
{-# OPTIONS --allow-unsolved-metas #-}
open import Level
open import Categories.Category.Core
open import Categories.Category.Extensive.Bundle
@ -5,10 +9,26 @@ open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian
open import Categories.Category.Cartesian
open import Categories.Category.Extensive
open import Categories.Monad
open import Categories.Functor
open import ElgotAlgebra
import Categories.Morphism.Reasoning as MR
```
-->
## Summary
This file introduces Elgot Monads.
- [X] *Definition 13* Pre-Elgot Monads
- [ ] *Definition 13* strong pre-Elgot
- [X] *Definition 14* Elgot Monads
- [ ] *Definition 14* strong Elgot
- [ ] *Proposition 15* (Strong) Elgot monads are (strong) pre-Elgot
## Code
```agda
module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
open HomReasoning
@ -17,10 +37,11 @@ module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) w
open BinaryProducts products hiding (η)
open MR C
open Equiv
open import Categories.Monad
open import Categories.Functor
```
### *Definition 13*: Pre-Elgot Monads
```agda
record IsPreElgot (T : Monad C) : Set (o ⊔ ⊔ e) where
open Monad T
open Functor F renaming (F₀ to T₀; F₁ to T₁)
@ -42,7 +63,10 @@ module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) w
isPreElgot : IsPreElgot T
open IsPreElgot isPreElgot public
```
### *Definition 14*: Elgot Monads
```agda
record IsElgot (T : Monad C) : Set (o ⊔ ⊔ e) where
open Monad T
open Functor F renaming (F₀ to T₀; F₁ to T₁)
@ -69,7 +93,11 @@ module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) w
isElgot : IsElgot T
open IsElgot isElgot public
```
### *Proposition 15*: (Strong) Elgot monads are (strong) pre-Elgot
```agda
-- elgot monads are pre-elgot
Elgot⇒PreElgot : ElgotMonad → PreElgotMonad
Elgot⇒PreElgot EM = record
@ -126,3 +154,4 @@ module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) w
module T = Monad T
open T using (F; η; μ)
open Functor F renaming (F₀ to T₀; F₁ to T₁)
```

View file

@ -1,18 +1,3 @@
---
title: Delay Monad
author: Leon Vatthauer
format: pdf
output:
pdf_document:
md_extensions: +task-lists
mainfont: DejaVu Serif
monofont: mononoki
geometry: margin=0.5cm
header-includes:
- \usepackage{fvextra}
- \DefineVerbatimEnvironment{Highlighting}{Verbatim}{breaklines,commandchars=\\\{\}}
---
<!--
```agda
open import Level
@ -33,6 +18,14 @@ import Categories.Morphism.Reasoning as MR
```
-->
## Summary
This file introduces the delay monad ***D***
- [X] *Proposition 1* Characterization of the delay monad ***D*** (here treated as definition)
- [ ] *Proposition 2* ***D*** is commutative
## Code
```agda
module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
@ -44,8 +37,9 @@ module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o
open MR C
open Equiv
open HomReasoning
-- Proposition 1
```
### *Proposition 1*: Characterization of the delay monad ***D***
```agda
record DelayMonad (D : Endofunctor C) : Set (o ⊔ ⊔ e) where
open Functor D using () renaming (F₀ to D₀; F₁ to D₁)
@ -86,6 +80,4 @@ module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o
; sym-assoc = λ {X} {Y} {Z} {f} {g} → *-unique ((g *) ∘ f) ((g *) ∘ (f *))
; extend-≈ = *-resp-≈
}
-- record Search
```
```

View file

@ -1,13 +1,27 @@
<!--
```agda
open import Level
open import Categories.Category.Core
open import Categories.Category.Extensive.Bundle
open import Categories.Category.Extensive
open import Categories.Category.Cocartesian
```
-->
## Summary
This file introduces *Uniform-Iteration Algebras*
- [X] *Definition 12* Uniform-Iteration Algebras
## Code
```agda
module UniformIterationAlgebra {o e} (D : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
open Cocartesian (Extensive.cocartesian extensive)
```
### *Definition 12*: Uniform-Iteration Algebras
```agda
record Uniform-Iteration-Algebra-on (A : Obj) : Set (o ⊔ ⊔ e) where
-- iteration operator
field
@ -26,4 +40,5 @@ module UniformIterationAlgebra {o e} (D : ExtensiveDistributiveCategory o
field
A : Obj
algebra : Uniform-Iteration-Algebra-on A
open Uniform-Iteration-Algebra-on algebra public
open Uniform-Iteration-Algebra-on algebra public
```

View file

@ -1,19 +1,34 @@
<!--
```agda
open import Level
open import Categories.Category.Core
open import Categories.Category.Extensive.Bundle
open import Categories.Category.Extensive
open import Categories.Category.Cocartesian
import Categories.Morphism.Reasoning as MR
open import UniformIterationAlgebra
```
-->
## Summary
This file introduces the category of Uniform-Iteration Algebras
- [X] *Definition 12* Uniform-Iteration Algebras
## Code
```agda
module UniformIterationAlgebras {o e} (D : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
open Cocartesian (Extensive.cocartesian extensive)
open HomReasoning
open MR C
open Equiv
```
### *Definition 12*: Uniform-Iteration Algebras
```agda
-- iteration preversing morphism between two elgot-algebras
module _ (E₁ E₂ : Uniform-Iteration-Algebra D) where
open Uniform-Iteration-Algebra E₁ renaming (_# to _#₁)
@ -57,4 +72,5 @@ module UniformIterationAlgebras {o e} (D : ExtensiveDistributiveCategory o
}
; ∘-resp-≈ = ∘-resp-≈
}
where open Uniform-Iteration-Algebra-Morphism
where open Uniform-Iteration-Algebra-Morphism
```