Last fixes, added comments, summaries and fixed pipeline

This commit is contained in:
Leon Vatthauer 2023-08-19 16:01:48 +02:00
parent a0f370b000
commit 758f5c4ac3
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
6 changed files with 173 additions and 91 deletions

View file

@ -1,17 +1,22 @@
.PHONY: all clean .PHONY: all clean pandoc
all: Everything.agda all: agda
make pandoc
pandoc: out/*.md
@$(foreach file,$^, \
pandoc $(file) -s -c Agda.css -o $(file:.md=.html) ; \
)
agda : Everything.agda
agda --html --html-dir=out Everything.agda --html-highlight=auto -i. agda --html --html-dir=out Everything.agda --html-highlight=auto -i.
pandoc out/MonadK.md -s -c Agda.css -o out/MonadK.html
pandoc out/ElgotAlgebra.md -s -c Agda.css -o out/ElgotAlgebra.html
clean: clean:
rm Everything.agda rm Everything.agda
rm -rf out/* rm -rf out/*
open: open:
firefox out/MonadK.html firefox out/Everything.html
firefox out/ElgotAlgebra.html
Everything.agda: Everything.agda:
git ls-tree --full-tree -r --name-only HEAD | egrep '^src/[^\.]*.l?agda(\.md)?' | sed -e 's|^src/[/]*|import |' -e 's|/|.|g' -e 's/.agda//' -e '/import Everything/d' -e 's/..md//' | LC_COLLATE='C' sort > Everything.agda git ls-tree --full-tree -r --name-only HEAD | egrep '^src/[^\.]*.l?agda(\.md)?' | sed -e 's|^src/[/]*|import |' -e 's|/|.|g' -e 's/.agda//' -e '/import Everything/d' -e 's/..md//' | LC_COLLATE='C' sort > Everything.agda

View file

@ -1,6 +1,7 @@
<!--
```agda
{-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --allow-unsolved-metas #-}
open import Level open import Level
open import Categories.Category.Cocartesian using (Cocartesian) open import Categories.Category.Cocartesian using (Cocartesian)
open import Categories.Category.Cartesian using (Cartesian) open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.BinaryProducts using (BinaryProducts) open import Categories.Category.BinaryProducts using (BinaryProducts)
@ -16,7 +17,19 @@ open import Categories.Category.Extensive.Bundle
open import Categories.Category.Extensive open import Categories.Category.Extensive
import Categories.Morphism as M import Categories.Morphism as M
import Categories.Morphism.Reasoning as MR import Categories.Morphism.Reasoning as MR
```
-->
## Summary
This file introduces the category of *unguarded* elgot algebras
- [X] *Definition 7* Category of elgot algebras
- [X] *Lemma 11* Products of elgot algebras
- [ ] *Lemma 11* Exponentials of elgot algebras
## Code
```agda
module ElgotAlgebras where module ElgotAlgebras where
private private
@ -32,10 +45,11 @@ module _ (D : ExtensiveDistributiveCategory o e) where
open MR C open MR C
open HomReasoning open HomReasoning
open Equiv open Equiv
```
--* ### *Definition 7*: Category of elgot algebras
-- let's define the category of elgot-algebras
--* ```agda
-- iteration preversing morphism between two elgot-algebras -- iteration preversing morphism between two elgot-algebras
module _ (E₁ E₂ : Elgot-Algebra D) where module _ (E₁ E₂ : Elgot-Algebra D) where
@ -81,21 +95,23 @@ module _ (D : ExtensiveDistributiveCategory o e) where
; ∘-resp-≈ = ∘-resp-≈ ; ∘-resp-≈ = ∘-resp-≈
} }
where open Elgot-Algebra-Morphism where open Elgot-Algebra-Morphism
```
--* ### *Lemma 11*: Products of elgot algebras
-- products and exponentials of elgot-algebras
--*
```agda
-- if the carrier contains a terminal, so does elgot-algebras -- if the carrier contains a terminal, so does elgot-algebras
Terminal-Elgot-Algebras : Terminal C → Terminal Elgot-Algebras Terminal-Elgot-Algebras : Terminal C → Terminal Elgot-Algebras
Terminal-Elgot-Algebras T = record Terminal-Elgot-Algebras T = record
{ = record { = record
{ A = { A =
; _# = λ x → ! ; algebra = record
; #-Fixpoint = λ {_ f} → !-unique ([ idC , ! ] ∘ f) { _# = λ x → !
; #-Uniformity = λ {_ _ _ _ h} _ → !-unique (! ∘ h) ; #-Fixpoint = λ {_ f} → !-unique ([ idC , ! ] ∘ f)
; #-Folding = refl ; #-Uniformity = λ {_ _ _ _ h} _ → !-unique (! ∘ h)
; #-resp-≈ = λ _ → refl ; #-Folding = refl
; #-resp-≈ = λ _ → refl
}
} }
; -is-terminal = record ; -is-terminal = record
{ ! = λ {A} → record { h = ! ; preserves = λ {X} {f} → sym (!-unique (! ∘ (A Elgot-Algebra.#) f)) } { ! = λ {A} → record { h = ! ; preserves = λ {X} {f} → sym (!-unique (! ∘ (A Elgot-Algebra.#) f)) }
@ -109,48 +125,50 @@ module _ (D : ExtensiveDistributiveCategory o e) where
A×B-Helper : ∀ {EA EB : Elgot-Algebra D} → Elgot-Algebra D A×B-Helper : ∀ {EA EB : Elgot-Algebra D} → Elgot-Algebra D
A×B-Helper {EA} {EB} = record A×B-Helper {EA} {EB} = record
{ A = A × B { A = A × B
; _# = λ {X : Obj} (h : X ⇒ A×B + X) → ⟨ ((π₁ +₁ idC) ∘ h)#ᵃ , ((π₂ +₁ idC) ∘ h)#ᵇ ⟩ ; algebra = record
; #-Fixpoint = λ {X} {f} → begin { _# = λ {X : Obj} (h : X ⇒ A×B + X) → ⟨ ((π₁ +₁ idC) ∘ h)#ᵃ , ((π₂ +₁ idC) ∘ h)#ᵇ ⟩
⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint ⟩ ; #-Fixpoint = λ {X} {f} → begin
⟨ [ idC , ((π₁ +₁ idC) ∘ f)#ᵃ ] ∘ ((π₁ +₁ idC) ∘ f) , [ idC , ((π₂ +₁ idC) ∘ f)#ᵇ ] ∘ ((π₂ +₁ idC) ∘ f) ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ []∘+₁) (pullˡ []∘+₁) ⟩ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint ⟩
⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] ∘ f , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ∘ f ⟩ ≈˘⟨ ⟨⟩∘ ⟩ ⟨ [ idC , ((π₁ +₁ idC) ∘ f)#ᵃ ] ∘ ((π₁ +₁ idC) ∘ f) , [ idC , ((π₂ +₁ idC) ∘ f)#ᵇ ] ∘ ((π₂ +₁ idC) ∘ f) ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ []∘+₁) (pullˡ []∘+₁) ⟩
(⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ∘ f) ≈⟨ ∘-resp-≈ˡ (unique ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] ∘ f , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ∘ f ⟩ ≈˘⟨ ⟨⟩∘ ⟩
(begin (⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ∘ f) ≈⟨ ∘-resp-≈ˡ (unique
π₁ ∘ ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ≈⟨ project₁ ⟩
[ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₁)) ⟩
[ π₁ ∘ idC , π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩
π₁ ∘ [ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∎)
(begin
π₂ ∘ ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ≈⟨ project₂ ⟩
[ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₂)) ⟩
[ π₂ ∘ idC , π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩
π₂ ∘ [ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∎)
)⟩
([ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∘ f) ∎
; #-Uniformity = λ {X Y f g h} uni → unique
(begin
π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ project₁ ⟩
(((π₁ +₁ idC) ∘ f)#ᵃ) ≈⟨ #ᵃ-Uniformity
(begin
-- TODO factor these out or adjust +₁ swap... maybe call it +₁-id-comm
(idC +₁ h) ∘ (π₁ +₁ idC) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm)) ⟩
(π₁ ∘ idC +₁ idC ∘ h) ∘ f ≈˘⟨ pullˡ +₁∘+₁ ⟩
(π₁ +₁ idC) ∘ (idC +₁ h) ∘ f ≈⟨ pushʳ uni ⟩
((π₁ +₁ idC) ∘ g) ∘ h ∎)⟩
(((π₁ +₁ idC) ∘ g)#ᵃ ∘ h) ≈˘⟨ pullˡ project₁ ⟩
π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ g)#ᵃ , ((π₂ +₁ idC) ∘ g)#ᵇ ⟩ ∘ h ∎)
(begin
π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ project₂ ⟩
((π₂ +₁ idC) ∘ f)#ᵇ ≈⟨ #ᵇ-Uniformity
(begin (begin
(idC +₁ h) ∘ (π₂ +₁ idC) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))⟩ π₁ ∘ ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ≈⟨ project₁ ⟩
((π₂ ∘ idC +₁ idC ∘ h) ∘ f) ≈˘⟨ pullˡ +₁∘+₁ ⟩ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₁)) ⟩
(π₂ +₁ idC) ∘ ((idC +₁ h)) ∘ f ≈⟨ pushʳ uni ⟩ [ π₁ ∘ idC , π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩
((π₂ +₁ idC) ∘ g) ∘ h ∎)⟩ π₁ ∘ [ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∎)
((π₂ +₁ idC) ∘ g)#ᵇ ∘ h ≈˘⟨ pullˡ project₂ ⟩ (begin
π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ g)#ᵃ , ((π₂ +₁ idC) ∘ g)#ᵇ ⟩ ∘ h ∎) π₂ ∘ ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ≈⟨ project₂ ⟩
; #-Folding = λ {X} {Y} {f} {h} → ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y}) [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₂)) ⟩
; #-resp-≈ = λ fg → ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg)) [ π₂ ∘ idC , π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ≈˘⟨ ∘[] ⟩
π₂ ∘ [ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∎)
)⟩
([ idC , ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ] ∘ f) ∎
; #-Uniformity = λ {X Y f g h} uni → unique
(begin
π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ project₁ ⟩
(((π₁ +₁ idC) ∘ f)#ᵃ) ≈⟨ #ᵃ-Uniformity
(begin
-- TODO factor these out or adjust +₁ swap... maybe call it +₁-id-comm
(idC +₁ h) ∘ (π₁ +₁ idC) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm)) ⟩
(π₁ ∘ idC +₁ idC ∘ h) ∘ f ≈˘⟨ pullˡ +₁∘+₁ ⟩
(π₁ +₁ idC) ∘ (idC +₁ h) ∘ f ≈⟨ pushʳ uni ⟩
((π₁ +₁ idC) ∘ g) ∘ h ∎)⟩
(((π₁ +₁ idC) ∘ g)#ᵃ ∘ h) ≈˘⟨ pullˡ project₁ ⟩
π₁ ∘ ⟨ ((π₁ +₁ idC) ∘ g)#ᵃ , ((π₂ +₁ idC) ∘ g)#ᵇ ⟩ ∘ h ∎)
(begin
π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ project₂ ⟩
((π₂ +₁ idC) ∘ f)#ᵇ ≈⟨ #ᵇ-Uniformity
(begin
(idC +₁ h) ∘ (π₂ +₁ idC) ∘ f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))⟩
((π₂ ∘ idC +₁ idC ∘ h) ∘ f) ≈˘⟨ pullˡ +₁∘+₁ ⟩
(π₂ +₁ idC) ∘ ((idC +₁ h)) ∘ f ≈⟨ pushʳ uni ⟩
((π₂ +₁ idC) ∘ g) ∘ h ∎)⟩
((π₂ +₁ idC) ∘ g)#ᵇ ∘ h ≈˘⟨ pullˡ project₂ ⟩
π₂ ∘ ⟨ ((π₁ +₁ idC) ∘ g)#ᵃ , ((π₂ +₁ idC) ∘ g)#ᵇ ⟩ ∘ h ∎)
; #-Folding = λ {X} {Y} {f} {h} → ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y})
; #-resp-≈ = λ fg → ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg))
}
} }
where where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈) open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
@ -205,19 +223,26 @@ module _ (D : ExtensiveDistributiveCategory o e) where
{ terminal = Terminal-Elgot-Algebras terminal { terminal = Terminal-Elgot-Algebras terminal
; products = record { product = λ {EA EB} → Product-Elgot-Algebras EA EB } ; products = record { product = λ {EA EB} → Product-Elgot-Algebras EA EB }
} }
```
*Lemma 11*: Exponentials of elgot algebras
```agda
-- if the carriers of the algebra form a exponential, so do the algebras -- if the carriers of the algebra form a exponential, so do the algebras
B^A-Helper : ∀ {EA : Elgot-Algebra D} {X : Obj} → Exponential C X (Elgot-Algebra.A EA) → Elgot-Algebra D B^A-Helper : ∀ {EA : Elgot-Algebra D} {X : Obj} → Exponential C X (Elgot-Algebra.A EA) → Elgot-Algebra D
B^A-Helper {EA} {X} exp = record B^A-Helper {EA} {X} exp = record
{ A = A^X { A = A^X
; _# = λ {Z} f → λg product (((((eval +₁ idC) ∘ (Categories.Object.Product.repack C product product' +₁ idC)) ∘ dstl) ∘ (f ⁂ idC)) #ᵃ) ; algebra = record
; #-Fixpoint = λ {X} {f} → {! !} { _# = λ {Z} f → λg product (((((eval +₁ idC) ∘ (Categories.Object.Product.repack C product product' +₁ idC)) ∘ dstl) ∘ (f ⁂ idC)) #ᵃ)
; #-Uniformity = {! !} ; #-Fixpoint = {! !}
; #-Folding = {! !} ; #-Uniformity = {! !}
; #-resp-≈ = {! !} ; #-Folding = {! !}
; #-resp-≈ = {! !}
}
} }
where where
open Exponential exp renaming (B^A to A^X; product to product') open Exponential exp renaming (B^A to A^X; product to product')
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈) open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
dstr = λ {X Y Z} → IsIso.inv (isIsoˡ {X} {Y} {Z}) dstr = λ {X Y Z} → IsIso.inv (isIsoˡ {X} {Y} {Z})
dstl = λ {X Y Z} → IsIso.inv (isIsoʳ {X} {Y} {Z}) dstl = λ {X Y Z} → IsIso.inv (isIsoʳ {X} {Y} {Z})
```

View file

@ -1,3 +1,7 @@
<!--
```agda
{-# OPTIONS --allow-unsolved-metas #-}
open import Level open import Level
open import Categories.Category.Core open import Categories.Category.Core
open import Categories.Category.Extensive.Bundle open import Categories.Category.Extensive.Bundle
@ -5,10 +9,26 @@ open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian open import Categories.Category.Cocartesian
open import Categories.Category.Cartesian open import Categories.Category.Cartesian
open import Categories.Category.Extensive open import Categories.Category.Extensive
open import Categories.Monad
open import Categories.Functor
open import ElgotAlgebra open import ElgotAlgebra
import Categories.Morphism.Reasoning as MR import Categories.Morphism.Reasoning as MR
```
-->
## Summary
This file introduces Elgot Monads.
- [X] *Definition 13* Pre-Elgot Monads
- [ ] *Definition 13* strong pre-Elgot
- [X] *Definition 14* Elgot Monads
- [ ] *Definition 14* strong Elgot
- [ ] *Proposition 15* (Strong) Elgot monads are (strong) pre-Elgot
## Code
```agda
module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) where module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC) open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
open HomReasoning open HomReasoning
@ -17,10 +37,11 @@ module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) w
open BinaryProducts products hiding (η) open BinaryProducts products hiding (η)
open MR C open MR C
open Equiv open Equiv
```
open import Categories.Monad
open import Categories.Functor
### *Definition 13*: Pre-Elgot Monads
```agda
record IsPreElgot (T : Monad C) : Set (o ⊔ ⊔ e) where record IsPreElgot (T : Monad C) : Set (o ⊔ ⊔ e) where
open Monad T open Monad T
open Functor F renaming (F₀ to T₀; F₁ to T₁) open Functor F renaming (F₀ to T₀; F₁ to T₁)
@ -42,7 +63,10 @@ module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) w
isPreElgot : IsPreElgot T isPreElgot : IsPreElgot T
open IsPreElgot isPreElgot public open IsPreElgot isPreElgot public
```
### *Definition 14*: Elgot Monads
```agda
record IsElgot (T : Monad C) : Set (o ⊔ ⊔ e) where record IsElgot (T : Monad C) : Set (o ⊔ ⊔ e) where
open Monad T open Monad T
open Functor F renaming (F₀ to T₀; F₁ to T₁) open Functor F renaming (F₀ to T₀; F₁ to T₁)
@ -69,7 +93,11 @@ module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) w
isElgot : IsElgot T isElgot : IsElgot T
open IsElgot isElgot public open IsElgot isElgot public
```
### *Proposition 15*: (Strong) Elgot monads are (strong) pre-Elgot
```agda
-- elgot monads are pre-elgot -- elgot monads are pre-elgot
Elgot⇒PreElgot : ElgotMonad → PreElgotMonad Elgot⇒PreElgot : ElgotMonad → PreElgotMonad
Elgot⇒PreElgot EM = record Elgot⇒PreElgot EM = record
@ -126,3 +154,4 @@ module Monad.ElgotMonad {o e} (ED : ExtensiveDistributiveCategory o e) w
module T = Monad T module T = Monad T
open T using (F; η; μ) open T using (F; η; μ)
open Functor F renaming (F₀ to T₀; F₁ to T₁) open Functor F renaming (F₀ to T₀; F₁ to T₁)
```

View file

@ -1,18 +1,3 @@
---
title: Delay Monad
author: Leon Vatthauer
format: pdf
output:
pdf_document:
md_extensions: +task-lists
mainfont: DejaVu Serif
monofont: mononoki
geometry: margin=0.5cm
header-includes:
- \usepackage{fvextra}
- \DefineVerbatimEnvironment{Highlighting}{Verbatim}{breaklines,commandchars=\\\{\}}
---
<!-- <!--
```agda ```agda
open import Level open import Level
@ -33,6 +18,14 @@ import Categories.Morphism.Reasoning as MR
``` ```
--> -->
## Summary
This file introduces the delay monad ***D***
- [X] *Proposition 1* Characterization of the delay monad ***D*** (here treated as definition)
- [ ] *Proposition 2* ***D*** is commutative
## Code
```agda ```agda
module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o e) where module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC) open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
@ -44,8 +37,9 @@ module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o
open MR C open MR C
open Equiv open Equiv
open HomReasoning open HomReasoning
```
-- Proposition 1 ### *Proposition 1*: Characterization of the delay monad ***D***
```agda
record DelayMonad (D : Endofunctor C) : Set (o ⊔ ⊔ e) where record DelayMonad (D : Endofunctor C) : Set (o ⊔ ⊔ e) where
open Functor D using () renaming (F₀ to D₀; F₁ to D₁) open Functor D using () renaming (F₀ to D₀; F₁ to D₁)
@ -86,6 +80,4 @@ module Monad.Instance.Delay {o e} (ED : ExtensiveDistributiveCategory o
; sym-assoc = λ {X} {Y} {Z} {f} {g} → *-unique ((g *) ∘ f) ((g *) ∘ (f *)) ; sym-assoc = λ {X} {Y} {Z} {f} {g} → *-unique ((g *) ∘ f) ((g *) ∘ (f *))
; extend-≈ = *-resp-≈ ; extend-≈ = *-resp-≈
} }
```
-- record Search
```

View file

@ -1,13 +1,27 @@
<!--
```agda
open import Level open import Level
open import Categories.Category.Core open import Categories.Category.Core
open import Categories.Category.Extensive.Bundle open import Categories.Category.Extensive.Bundle
open import Categories.Category.Extensive open import Categories.Category.Extensive
open import Categories.Category.Cocartesian open import Categories.Category.Cocartesian
```
-->
## Summary
This file introduces *Uniform-Iteration Algebras*
- [X] *Definition 12* Uniform-Iteration Algebras
## Code
```agda
module UniformIterationAlgebra {o e} (D : ExtensiveDistributiveCategory o e) where module UniformIterationAlgebra {o e} (D : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory D renaming (U to C; id to idC) open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
open Cocartesian (Extensive.cocartesian extensive) open Cocartesian (Extensive.cocartesian extensive)
```
### *Definition 12*: Uniform-Iteration Algebras
```agda
record Uniform-Iteration-Algebra-on (A : Obj) : Set (o ⊔ ⊔ e) where record Uniform-Iteration-Algebra-on (A : Obj) : Set (o ⊔ ⊔ e) where
-- iteration operator -- iteration operator
field field
@ -26,4 +40,5 @@ module UniformIterationAlgebra {o e} (D : ExtensiveDistributiveCategory o
field field
A : Obj A : Obj
algebra : Uniform-Iteration-Algebra-on A algebra : Uniform-Iteration-Algebra-on A
open Uniform-Iteration-Algebra-on algebra public open Uniform-Iteration-Algebra-on algebra public
```

View file

@ -1,19 +1,34 @@
<!--
```agda
open import Level open import Level
open import Categories.Category.Core open import Categories.Category.Core
open import Categories.Category.Extensive.Bundle open import Categories.Category.Extensive.Bundle
open import Categories.Category.Extensive open import Categories.Category.Extensive
open import Categories.Category.Cocartesian open import Categories.Category.Cocartesian
import Categories.Morphism.Reasoning as MR import Categories.Morphism.Reasoning as MR
open import UniformIterationAlgebra open import UniformIterationAlgebra
```
-->
## Summary
This file introduces the category of Uniform-Iteration Algebras
- [X] *Definition 12* Uniform-Iteration Algebras
## Code
```agda
module UniformIterationAlgebras {o e} (D : ExtensiveDistributiveCategory o e) where module UniformIterationAlgebras {o e} (D : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory D renaming (U to C; id to idC) open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
open Cocartesian (Extensive.cocartesian extensive) open Cocartesian (Extensive.cocartesian extensive)
open HomReasoning open HomReasoning
open MR C open MR C
open Equiv open Equiv
```
### *Definition 12*: Uniform-Iteration Algebras
```agda
-- iteration preversing morphism between two elgot-algebras -- iteration preversing morphism between two elgot-algebras
module _ (E₁ E₂ : Uniform-Iteration-Algebra D) where module _ (E₁ E₂ : Uniform-Iteration-Algebra D) where
open Uniform-Iteration-Algebra E₁ renaming (_# to _#₁) open Uniform-Iteration-Algebra E₁ renaming (_# to _#₁)
@ -57,4 +72,5 @@ module UniformIterationAlgebras {o e} (D : ExtensiveDistributiveCategory o
} }
; ∘-resp-≈ = ∘-resp-≈ ; ∘-resp-≈ = ∘-resp-≈
} }
where open Uniform-Iteration-Algebra-Morphism where open Uniform-Iteration-Algebra-Morphism
```