mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Last fixes, added comments, summaries and fixed pipeline
This commit is contained in:
parent
a0f370b000
commit
758f5c4ac3
6 changed files with 173 additions and 91 deletions
17
Makefile
17
Makefile
|
@ -1,17 +1,22 @@
|
|||
.PHONY: all clean
|
||||
.PHONY: all clean pandoc
|
||||
|
||||
all: Everything.agda
|
||||
all: agda
|
||||
make pandoc
|
||||
|
||||
pandoc: out/*.md
|
||||
@$(foreach file,$^, \
|
||||
pandoc $(file) -s -c Agda.css -o $(file:.md=.html) ; \
|
||||
)
|
||||
|
||||
agda : Everything.agda
|
||||
agda --html --html-dir=out Everything.agda --html-highlight=auto -i.
|
||||
pandoc out/MonadK.md -s -c Agda.css -o out/MonadK.html
|
||||
pandoc out/ElgotAlgebra.md -s -c Agda.css -o out/ElgotAlgebra.html
|
||||
|
||||
clean:
|
||||
rm Everything.agda
|
||||
rm -rf out/*
|
||||
|
||||
open:
|
||||
firefox out/MonadK.html
|
||||
firefox out/ElgotAlgebra.html
|
||||
firefox out/Everything.html
|
||||
|
||||
Everything.agda:
|
||||
git ls-tree --full-tree -r --name-only HEAD | egrep '^src/[^\.]*.l?agda(\.md)?' | sed -e 's|^src/[/]*|import |' -e 's|/|.|g' -e 's/.agda//' -e '/import Everything/d' -e 's/..md//' | LC_COLLATE='C' sort > Everything.agda
|
|
@ -1,6 +1,7 @@
|
|||
<!--
|
||||
```agda
|
||||
{-# OPTIONS --allow-unsolved-metas #-}
|
||||
open import Level
|
||||
|
||||
open import Categories.Category.Cocartesian using (Cocartesian)
|
||||
open import Categories.Category.Cartesian using (Cartesian)
|
||||
open import Categories.Category.BinaryProducts using (BinaryProducts)
|
||||
|
@ -16,7 +17,19 @@ open import Categories.Category.Extensive.Bundle
|
|||
open import Categories.Category.Extensive
|
||||
import Categories.Morphism as M
|
||||
import Categories.Morphism.Reasoning as MR
|
||||
```
|
||||
-->
|
||||
|
||||
## Summary
|
||||
This file introduces the category of *unguarded* elgot algebras
|
||||
|
||||
- [X] *Definition 7* Category of elgot algebras
|
||||
- [X] *Lemma 11* Products of elgot algebras
|
||||
- [ ] *Lemma 11* Exponentials of elgot algebras
|
||||
|
||||
## Code
|
||||
|
||||
```agda
|
||||
module ElgotAlgebras where
|
||||
|
||||
private
|
||||
|
@ -32,10 +45,11 @@ module _ (D : ExtensiveDistributiveCategory o ℓ e) where
|
|||
open MR C
|
||||
open HomReasoning
|
||||
open Equiv
|
||||
```
|
||||
|
||||
--*
|
||||
-- let's define the category of elgot-algebras
|
||||
--*
|
||||
### *Definition 7*: Category of elgot algebras
|
||||
|
||||
```agda
|
||||
|
||||
-- iteration preversing morphism between two elgot-algebras
|
||||
module _ (E₁ E₂ : Elgot-Algebra D) where
|
||||
|
@ -81,22 +95,24 @@ module _ (D : ExtensiveDistributiveCategory o ℓ e) where
|
|||
; ∘-resp-≈ = ∘-resp-≈
|
||||
}
|
||||
where open Elgot-Algebra-Morphism
|
||||
```
|
||||
|
||||
--*
|
||||
-- products and exponentials of elgot-algebras
|
||||
--*
|
||||
### *Lemma 11*: Products of elgot algebras
|
||||
|
||||
```agda
|
||||
-- if the carrier contains a terminal, so does elgot-algebras
|
||||
Terminal-Elgot-Algebras : Terminal C → Terminal Elgot-Algebras
|
||||
Terminal-Elgot-Algebras T = record
|
||||
{ ⊤ = record
|
||||
{ A = ⊤
|
||||
; _# = λ x → !
|
||||
; algebra = record
|
||||
{ _# = λ x → !
|
||||
; #-Fixpoint = λ {_ f} → !-unique ([ idC , ! ] ∘ f)
|
||||
; #-Uniformity = λ {_ _ _ _ h} _ → !-unique (! ∘ h)
|
||||
; #-Folding = refl
|
||||
; #-resp-≈ = λ _ → refl
|
||||
}
|
||||
}
|
||||
; ⊤-is-terminal = record
|
||||
{ ! = λ {A} → record { h = ! ; preserves = λ {X} {f} → sym (!-unique (! ∘ (A Elgot-Algebra.#) f)) }
|
||||
; !-unique = λ {A} f → !-unique (Elgot-Algebra-Morphism.h f)
|
||||
|
@ -109,7 +125,8 @@ module _ (D : ExtensiveDistributiveCategory o ℓ e) where
|
|||
A×B-Helper : ∀ {EA EB : Elgot-Algebra D} → Elgot-Algebra D
|
||||
A×B-Helper {EA} {EB} = record
|
||||
{ A = A × B
|
||||
; _# = λ {X : Obj} (h : X ⇒ A×B + X) → ⟨ ((π₁ +₁ idC) ∘ h)#ᵃ , ((π₂ +₁ idC) ∘ h)#ᵇ ⟩
|
||||
; algebra = record
|
||||
{ _# = λ {X : Obj} (h : X ⇒ A×B + X) → ⟨ ((π₁ +₁ idC) ∘ h)#ᵃ , ((π₂ +₁ idC) ∘ h)#ᵇ ⟩
|
||||
; #-Fixpoint = λ {X} {f} → begin
|
||||
⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint ⟩
|
||||
⟨ [ idC , ((π₁ +₁ idC) ∘ f)#ᵃ ] ∘ ((π₁ +₁ idC) ∘ f) , [ idC , ((π₂ +₁ idC) ∘ f)#ᵇ ] ∘ ((π₂ +₁ idC) ∘ f) ⟩ ≈⟨ ⟨⟩-cong₂ (pullˡ []∘+₁) (pullˡ []∘+₁) ⟩
|
||||
|
@ -152,6 +169,7 @@ module _ (D : ExtensiveDistributiveCategory o ℓ e) where
|
|||
; #-Folding = λ {X} {Y} {f} {h} → ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y})
|
||||
; #-resp-≈ = λ fg → ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg))
|
||||
}
|
||||
}
|
||||
where
|
||||
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
|
||||
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
|
||||
|
@ -205,19 +223,26 @@ module _ (D : ExtensiveDistributiveCategory o ℓ e) where
|
|||
{ terminal = Terminal-Elgot-Algebras terminal
|
||||
; products = record { product = λ {EA EB} → Product-Elgot-Algebras EA EB }
|
||||
}
|
||||
```
|
||||
|
||||
*Lemma 11*: Exponentials of elgot algebras
|
||||
|
||||
```agda
|
||||
-- if the carriers of the algebra form a exponential, so do the algebras
|
||||
B^A-Helper : ∀ {EA : Elgot-Algebra D} {X : Obj} → Exponential C X (Elgot-Algebra.A EA) → Elgot-Algebra D
|
||||
B^A-Helper {EA} {X} exp = record
|
||||
{ A = A^X
|
||||
; _# = λ {Z} f → λg product (((((eval +₁ idC) ∘ (Categories.Object.Product.repack C product product' +₁ idC)) ∘ dstl) ∘ (f ⁂ idC)) #ᵃ)
|
||||
; #-Fixpoint = λ {X} {f} → {! !}
|
||||
; algebra = record
|
||||
{ _# = λ {Z} f → λg product (((((eval +₁ idC) ∘ (Categories.Object.Product.repack C product product' +₁ idC)) ∘ dstl) ∘ (f ⁂ idC)) #ᵃ)
|
||||
; #-Fixpoint = {! !}
|
||||
; #-Uniformity = {! !}
|
||||
; #-Folding = {! !}
|
||||
; #-resp-≈ = {! !}
|
||||
}
|
||||
}
|
||||
where
|
||||
open Exponential exp renaming (B^A to A^X; product to product')
|
||||
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
|
||||
dstr = λ {X Y Z} → IsIso.inv (isIsoˡ {X} {Y} {Z})
|
||||
dstl = λ {X Y Z} → IsIso.inv (isIsoʳ {X} {Y} {Z})
|
||||
```
|
|
@ -1,3 +1,7 @@
|
|||
<!--
|
||||
```agda
|
||||
{-# OPTIONS --allow-unsolved-metas #-}
|
||||
|
||||
open import Level
|
||||
open import Categories.Category.Core
|
||||
open import Categories.Category.Extensive.Bundle
|
||||
|
@ -5,10 +9,26 @@ open import Categories.Category.BinaryProducts
|
|||
open import Categories.Category.Cocartesian
|
||||
open import Categories.Category.Cartesian
|
||||
open import Categories.Category.Extensive
|
||||
open import Categories.Monad
|
||||
open import Categories.Functor
|
||||
open import ElgotAlgebra
|
||||
|
||||
import Categories.Morphism.Reasoning as MR
|
||||
```
|
||||
-->
|
||||
|
||||
## Summary
|
||||
This file introduces Elgot Monads.
|
||||
|
||||
- [X] *Definition 13* Pre-Elgot Monads
|
||||
- [ ] *Definition 13* strong pre-Elgot
|
||||
- [X] *Definition 14* Elgot Monads
|
||||
- [ ] *Definition 14* strong Elgot
|
||||
- [ ] *Proposition 15* (Strong) Elgot monads are (strong) pre-Elgot
|
||||
|
||||
## Code
|
||||
|
||||
```agda
|
||||
module Monad.ElgotMonad {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ e) where
|
||||
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
|
||||
open HomReasoning
|
||||
|
@ -17,10 +37,11 @@ module Monad.ElgotMonad {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ e) w
|
|||
open BinaryProducts products hiding (η)
|
||||
open MR C
|
||||
open Equiv
|
||||
```
|
||||
|
||||
open import Categories.Monad
|
||||
open import Categories.Functor
|
||||
### *Definition 13*: Pre-Elgot Monads
|
||||
|
||||
```agda
|
||||
record IsPreElgot (T : Monad C) : Set (o ⊔ ℓ ⊔ e) where
|
||||
open Monad T
|
||||
open Functor F renaming (F₀ to T₀; F₁ to T₁)
|
||||
|
@ -42,7 +63,10 @@ module Monad.ElgotMonad {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ e) w
|
|||
isPreElgot : IsPreElgot T
|
||||
|
||||
open IsPreElgot isPreElgot public
|
||||
```
|
||||
### *Definition 14*: Elgot Monads
|
||||
|
||||
```agda
|
||||
record IsElgot (T : Monad C) : Set (o ⊔ ℓ ⊔ e) where
|
||||
open Monad T
|
||||
open Functor F renaming (F₀ to T₀; F₁ to T₁)
|
||||
|
@ -69,7 +93,11 @@ module Monad.ElgotMonad {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ e) w
|
|||
isElgot : IsElgot T
|
||||
|
||||
open IsElgot isElgot public
|
||||
```
|
||||
|
||||
### *Proposition 15*: (Strong) Elgot monads are (strong) pre-Elgot
|
||||
|
||||
```agda
|
||||
-- elgot monads are pre-elgot
|
||||
Elgot⇒PreElgot : ElgotMonad → PreElgotMonad
|
||||
Elgot⇒PreElgot EM = record
|
||||
|
@ -126,3 +154,4 @@ module Monad.ElgotMonad {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ e) w
|
|||
module T = Monad T
|
||||
open T using (F; η; μ)
|
||||
open Functor F renaming (F₀ to T₀; F₁ to T₁)
|
||||
```
|
|
@ -1,18 +1,3 @@
|
|||
---
|
||||
title: Delay Monad
|
||||
author: Leon Vatthauer
|
||||
format: pdf
|
||||
output:
|
||||
pdf_document:
|
||||
md_extensions: +task-lists
|
||||
mainfont: DejaVu Serif
|
||||
monofont: mononoki
|
||||
geometry: margin=0.5cm
|
||||
header-includes:
|
||||
- \usepackage{fvextra}
|
||||
- \DefineVerbatimEnvironment{Highlighting}{Verbatim}{breaklines,commandchars=\\\{\}}
|
||||
---
|
||||
|
||||
<!--
|
||||
```agda
|
||||
open import Level
|
||||
|
@ -33,6 +18,14 @@ import Categories.Morphism.Reasoning as MR
|
|||
```
|
||||
-->
|
||||
|
||||
## Summary
|
||||
This file introduces the delay monad ***D***
|
||||
|
||||
- [X] *Proposition 1* Characterization of the delay monad ***D*** (here treated as definition)
|
||||
- [ ] *Proposition 2* ***D*** is commutative
|
||||
|
||||
## Code
|
||||
|
||||
```agda
|
||||
module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ e) where
|
||||
open ExtensiveDistributiveCategory ED renaming (U to C; id to idC)
|
||||
|
@ -44,8 +37,9 @@ module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ
|
|||
open MR C
|
||||
open Equiv
|
||||
open HomReasoning
|
||||
|
||||
-- Proposition 1
|
||||
```
|
||||
### *Proposition 1*: Characterization of the delay monad ***D***
|
||||
```agda
|
||||
record DelayMonad (D : Endofunctor C) : Set (o ⊔ ℓ ⊔ e) where
|
||||
open Functor D using () renaming (F₀ to D₀; F₁ to D₁)
|
||||
|
||||
|
@ -86,6 +80,4 @@ module Monad.Instance.Delay {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ
|
|||
; sym-assoc = λ {X} {Y} {Z} {f} {g} → *-unique ((g *) ∘ f) ((g *) ∘ (f *))
|
||||
; extend-≈ = *-resp-≈
|
||||
}
|
||||
|
||||
-- record Search
|
||||
```
|
|
@ -1,13 +1,27 @@
|
|||
<!--
|
||||
```agda
|
||||
open import Level
|
||||
open import Categories.Category.Core
|
||||
open import Categories.Category.Extensive.Bundle
|
||||
open import Categories.Category.Extensive
|
||||
open import Categories.Category.Cocartesian
|
||||
```
|
||||
-->
|
||||
## Summary
|
||||
This file introduces *Uniform-Iteration Algebras*
|
||||
|
||||
- [X] *Definition 12* Uniform-Iteration Algebras
|
||||
|
||||
## Code
|
||||
|
||||
```agda
|
||||
module UniformIterationAlgebra {o ℓ e} (D : ExtensiveDistributiveCategory o ℓ e) where
|
||||
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
|
||||
open Cocartesian (Extensive.cocartesian extensive)
|
||||
```
|
||||
|
||||
### *Definition 12*: Uniform-Iteration Algebras
|
||||
```agda
|
||||
record Uniform-Iteration-Algebra-on (A : Obj) : Set (o ⊔ ℓ ⊔ e) where
|
||||
-- iteration operator
|
||||
field
|
||||
|
@ -27,3 +41,4 @@ module UniformIterationAlgebra {o ℓ e} (D : ExtensiveDistributiveCategory o
|
|||
A : Obj
|
||||
algebra : Uniform-Iteration-Algebra-on A
|
||||
open Uniform-Iteration-Algebra-on algebra public
|
||||
```
|
|
@ -1,19 +1,34 @@
|
|||
<!--
|
||||
```agda
|
||||
open import Level
|
||||
open import Categories.Category.Core
|
||||
open import Categories.Category.Extensive.Bundle
|
||||
open import Categories.Category.Extensive
|
||||
open import Categories.Category.Cocartesian
|
||||
import Categories.Morphism.Reasoning as MR
|
||||
|
||||
open import UniformIterationAlgebra
|
||||
```
|
||||
-->
|
||||
|
||||
## Summary
|
||||
This file introduces the category of Uniform-Iteration Algebras
|
||||
|
||||
- [X] *Definition 12* Uniform-Iteration Algebras
|
||||
|
||||
## Code
|
||||
|
||||
```agda
|
||||
module UniformIterationAlgebras {o ℓ e} (D : ExtensiveDistributiveCategory o ℓ e) where
|
||||
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
|
||||
open Cocartesian (Extensive.cocartesian extensive)
|
||||
open HomReasoning
|
||||
open MR C
|
||||
open Equiv
|
||||
```
|
||||
|
||||
### *Definition 12*: Uniform-Iteration Algebras
|
||||
|
||||
```agda
|
||||
-- iteration preversing morphism between two elgot-algebras
|
||||
module _ (E₁ E₂ : Uniform-Iteration-Algebra D) where
|
||||
open Uniform-Iteration-Algebra E₁ renaming (_# to _#₁)
|
||||
|
@ -58,3 +73,4 @@ module UniformIterationAlgebras {o ℓ e} (D : ExtensiveDistributiveCategory o
|
|||
; ∘-resp-≈ = ∘-resp-≈
|
||||
}
|
||||
where open Uniform-Iteration-Algebra-Morphism
|
||||
```
|
Loading…
Reference in a new issue