mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
try to reintroduce CI
This commit is contained in:
parent
4d8bb098af
commit
93db0cb6dc
5 changed files with 26 additions and 7 deletions
16
.gitlab-ci.yml
Normal file
16
.gitlab-ci.yml
Normal file
|
@ -0,0 +1,16 @@
|
|||
variables:
|
||||
LATEX_IMAGE: listx/texlive:2020
|
||||
|
||||
build:
|
||||
image: $LATEX_IMAGE
|
||||
script:
|
||||
- cd thesis
|
||||
- latexmk -pdf -xelatex -shell-escape main.tex
|
||||
- cd ../slides
|
||||
- latexmk -pdf -xelatex -shell-escape main.tex
|
||||
|
||||
artifacts:
|
||||
paths:
|
||||
- "thesis/*.pdf"
|
||||
- "slides/*.pdf"
|
||||
|
2
slides/.vscode/settings.json
vendored
2
slides/.vscode/settings.json
vendored
|
@ -24,4 +24,4 @@
|
|||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -149,8 +149,10 @@ Leon Vatthauer%\inst{1}
|
|||
}
|
||||
\usepackage{multicol}
|
||||
|
||||
\usepackage{fontspec}
|
||||
\setmonofont{Noto Sans Mono}
|
||||
|
||||
\usepackage{noto-mono}
|
||||
% \usepackage{fontspec}
|
||||
% \setmonofont{Noto Sans Mono}
|
||||
|
||||
\usepackage{lmodern}
|
||||
|
||||
|
|
|
@ -53,7 +53,7 @@
|
|||
\chaptermark{#1}%
|
||||
\addcontentsline{toc}{chapter}{#1}}
|
||||
|
||||
\newcommand\C{\mathcal{C}}
|
||||
%\newcommand\C{\mathcal{C}}
|
||||
|
||||
\declaretheorem[name=Definition,style=definition,numberwithin=chapter]{definition}
|
||||
\declaretheorem[name=Example,style=definition,sibling=definition]{example}
|
||||
|
@ -90,8 +90,9 @@
|
|||
\newcommand*{\theauthor}{\@author}
|
||||
\makeatother
|
||||
|
||||
\usepackage{fontspec}
|
||||
\setmonofont{Noto Sans Mono}
|
||||
\usepackage{noto-mono}
|
||||
%\usepackage{fontspec}
|
||||
%\setmonofont{Noto Sans Mono}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
|
|
@ -149,7 +149,7 @@ When modelling partiality with a monad, one would expect the following two progr
|
|||
\end{multicols}
|
||||
where p and q are (partial) computations. This condition can be expressed categorically, but first we need another definition:
|
||||
|
||||
\begin{definition}[Strong Monad~\cite{moggi}] A monad $M$ on a cartesian category $\C$ is called strong if there exists a natural transformation $\tau_{X,Y} : X \times MY \rightarrow M(X \times Y)$, satisfying the following conditions:
|
||||
\begin{definition}[Strong Monad~\cite{moggi}] A monad $M$ on a cartesian category $\mathcal{C}$ is called strong if there exists a natural transformation $\tau_{X,Y} : X \times MY \rightarrow M(X \times Y)$, satisfying the following conditions:
|
||||
\begin{enumerate}
|
||||
\item $M\pi_2 \circ \tau_{1,X} = \pi_2$
|
||||
\item $M \alpha_{X,Y,Z} \circ \tau_{X \times Y, Z} = \tau_{X, Y\times Z} \circ (id_X \times \tau_{Y, Z}) \circ \alpha_{X,Y,MZ}$
|
||||
|
|
Loading…
Reference in a new issue