try to reintroduce CI

This commit is contained in:
Leon Vatthauer 2024-01-11 13:44:49 +01:00
parent 4d8bb098af
commit 93db0cb6dc
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
5 changed files with 26 additions and 7 deletions

16
.gitlab-ci.yml Normal file
View file

@ -0,0 +1,16 @@
variables:
LATEX_IMAGE: listx/texlive:2020
build:
image: $LATEX_IMAGE
script:
- cd thesis
- latexmk -pdf -xelatex -shell-escape main.tex
- cd ../slides
- latexmk -pdf -xelatex -shell-escape main.tex
artifacts:
paths:
- "thesis/*.pdf"
- "slides/*.pdf"

View file

@ -24,4 +24,4 @@
]
}
]
}
}

View file

@ -149,8 +149,10 @@ Leon Vatthauer%\inst{1}
}
\usepackage{multicol}
\usepackage{fontspec}
\setmonofont{Noto Sans Mono}
\usepackage{noto-mono}
% \usepackage{fontspec}
% \setmonofont{Noto Sans Mono}
\usepackage{lmodern}

View file

@ -53,7 +53,7 @@
\chaptermark{#1}%
\addcontentsline{toc}{chapter}{#1}}
\newcommand\C{\mathcal{C}}
%\newcommand\C{\mathcal{C}}
\declaretheorem[name=Definition,style=definition,numberwithin=chapter]{definition}
\declaretheorem[name=Example,style=definition,sibling=definition]{example}
@ -90,8 +90,9 @@
\newcommand*{\theauthor}{\@author}
\makeatother
\usepackage{fontspec}
\setmonofont{Noto Sans Mono}
\usepackage{noto-mono}
%\usepackage{fontspec}
%\setmonofont{Noto Sans Mono}
\begin{document}

View file

@ -149,7 +149,7 @@ When modelling partiality with a monad, one would expect the following two progr
\end{multicols}
where p and q are (partial) computations. This condition can be expressed categorically, but first we need another definition:
\begin{definition}[Strong Monad~\cite{moggi}] A monad $M$ on a cartesian category $\C$ is called strong if there exists a natural transformation $\tau_{X,Y} : X \times MY \rightarrow M(X \times Y)$, satisfying the following conditions:
\begin{definition}[Strong Monad~\cite{moggi}] A monad $M$ on a cartesian category $\mathcal{C}$ is called strong if there exists a natural transformation $\tau_{X,Y} : X \times MY \rightarrow M(X \times Y)$, satisfying the following conditions:
\begin{enumerate}
\item $M\pi_2 \circ \tau_{1,X} = \pi_2$
\item $M \alpha_{X,Y,Z} \circ \tau_{X \times Y, Z} = \tau_{X, Y\times Z} \circ (id_X \times \tau_{Y, Z}) \circ \alpha_{X,Y,MZ}$