mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Added distributive and extensive category definitions, added coproduct definitions
This commit is contained in:
parent
bc9afcd8eb
commit
ae16aea8b4
8 changed files with 252 additions and 44 deletions
47
Coproduct.agda
Normal file
47
Coproduct.agda
Normal file
|
@ -0,0 +1,47 @@
|
|||
{-# OPTIONS --without-K --safe #-}
|
||||
|
||||
open import Categories.Category hiding (_[_,_])
|
||||
open import Level
|
||||
open import Function using (_$_)
|
||||
|
||||
module Coproduct {o ℓ e} (𝒞 : Category o ℓ e) where
|
||||
|
||||
open Category 𝒞
|
||||
|
||||
open import Categories.Morphism.Reasoning 𝒞
|
||||
open import Categories.Morphism 𝒞
|
||||
|
||||
open HomReasoning
|
||||
open import Categories.Object.Coproduct
|
||||
|
||||
private
|
||||
variable
|
||||
A B C D : Obj
|
||||
f g h : A ⇒ B
|
||||
|
||||
module _ {A B : Obj} where
|
||||
open Coproduct {𝒞 = 𝒞} {A = A} {B = B} renaming ([_,_] to _[_,_])
|
||||
|
||||
repack : (p₁ p₂ : Coproduct 𝒞 A B) → A+B p₁ ⇒ A+B p₂
|
||||
repack p₁ p₂ = p₁ [ i₁ p₂ , i₂ p₂ ]
|
||||
|
||||
repack∘ : (p₁ p₂ p₃ : Coproduct 𝒞 A B) → repack p₂ p₃ ∘ repack p₁ p₂ ≈ repack p₁ p₃
|
||||
repack∘ p₁ p₂ p₃ = ⟺ $ unique p₁
|
||||
(glueTrianglesˡ (inject₁ p₂) (inject₁ p₁))
|
||||
(glueTrianglesˡ (inject₂ p₂) (inject₂ p₁))
|
||||
|
||||
repack≡id : (p : Coproduct 𝒞 A B) → repack p p ≈ id
|
||||
repack≡id = η
|
||||
|
||||
repack-cancel : (p₁ p₂ : Coproduct 𝒞 A B) → repack p₁ p₂ ∘ repack p₂ p₁ ≈ id
|
||||
repack-cancel p₁ p₂ = repack∘ p₂ p₁ p₂ ○ repack≡id p₂
|
||||
|
||||
up-to-iso : ∀ (p₁ p₂ : Coproduct 𝒞 A B) → Coproduct.A+B p₁ ≅ Coproduct.A+B p₂
|
||||
up-to-iso p₁ p₂ = record
|
||||
{ from = repack p₁ p₂
|
||||
; to = repack p₂ p₁
|
||||
; iso = record
|
||||
{ isoˡ = repack-cancel p₂ p₁
|
||||
; isoʳ = repack-cancel p₁ p₂
|
||||
}
|
||||
}
|
|
@ -14,7 +14,9 @@ open import Level
|
|||
record DistributiveCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
|
||||
field
|
||||
U : Category o ℓ e
|
||||
distributive : Distributive U
|
||||
cartesian : Cartesian U
|
||||
cocartesian : Cocartesian U
|
||||
distributive : Distributive U cartesian cocartesian
|
||||
|
||||
open Category U public
|
||||
open Distributive distributive public
|
|
@ -5,6 +5,7 @@ open import Categories.Category.Cartesian
|
|||
open import Categories.Category.BinaryProducts
|
||||
open import Categories.Category.Cocartesian
|
||||
import Categories.Morphism as M
|
||||
import Categories.Morphism.Reasoning as MR
|
||||
|
||||
module Distributive.Core {o ℓ e} (𝒞 : Category o ℓ e) where
|
||||
|
||||
|
@ -12,17 +13,45 @@ open import Level
|
|||
open Category 𝒞
|
||||
open M 𝒞
|
||||
|
||||
record Distributive : Set (levelOfTerm 𝒞) where
|
||||
field
|
||||
cartesian : Cartesian 𝒞
|
||||
cocartesian : Cocartesian 𝒞
|
||||
private
|
||||
variable
|
||||
A B C : Obj
|
||||
|
||||
record Distributive (cartesian : Cartesian 𝒞) (cocartesian : Cocartesian 𝒞) : Set (levelOfTerm 𝒞) where
|
||||
open Cartesian cartesian
|
||||
open BinaryProducts products
|
||||
open Cocartesian cocartesian
|
||||
|
||||
distribute : ∀ {A B C} → (A × B + A × C) ⇒ (A × (B + C))
|
||||
distribute = [ id ⁂ i₁ , id ⁂ i₂ ]
|
||||
|
||||
field
|
||||
iso : ∀ {A B C} → IsIso (distribute {A} {B} {C})
|
||||
distributeˡ : (A × B + A × C) ≅ (A × (B + C))
|
||||
|
||||
distributeʳ : ∀ {A B C : Obj} → (B × A + C × A) ≅ (B + C) × A
|
||||
distributeʳ {A} {B} {C} = record
|
||||
{ from = (swap ∘ from) ∘ (swap +₁ swap)
|
||||
; to = ((swap +₁ swap) ∘ to) ∘ swap
|
||||
; iso = record
|
||||
{ isoˡ = begin
|
||||
(((swap +₁ swap) ∘ to) ∘ swap) ∘ (swap ∘ from) ∘ (swap +₁ swap) ≈⟨ pullˡ (pullˡ (pullʳ swap∘swap)) ⟩
|
||||
((((swap +₁ swap) ∘ to) ∘ id) ∘ from) ∘ (swap +₁ swap) ≈⟨ identityʳ ⟩∘⟨refl ⟩∘⟨refl ⟩
|
||||
(((swap +₁ swap) ∘ to) ∘ from) ∘ (swap +₁ swap) ≈⟨ pullʳ isoˡ ⟩∘⟨refl ⟩
|
||||
((swap +₁ swap) ∘ id) ∘ (swap +₁ swap) ≈⟨ identityʳ ⟩∘⟨refl ⟩
|
||||
(swap +₁ swap) ∘ (swap +₁ swap) ≈⟨ +₁∘+₁ ⟩
|
||||
((swap ∘ swap) +₁ (swap ∘ swap)) ≈⟨ +₁-cong₂ swap∘swap swap∘swap ⟩
|
||||
(id +₁ id) ≈⟨ +-unique id-comm-sym id-comm-sym ⟩
|
||||
id ∎
|
||||
; isoʳ = begin
|
||||
((swap ∘ from) ∘ (swap +₁ swap)) ∘ ((swap +₁ swap) ∘ to) ∘ swap ≈⟨ pullˡ (pullˡ (pullʳ +₁∘+₁)) ⟩
|
||||
(((swap ∘ from) ∘ ((swap ∘ swap) +₁ (swap ∘ swap))) ∘ to) ∘ swap ≈⟨ (((refl⟩∘⟨ +₁-cong₂ swap∘swap swap∘swap) ⟩∘⟨refl) ⟩∘⟨refl) ⟩
|
||||
(((swap ∘ from) ∘ (id +₁ id)) ∘ to) ∘ swap ≈⟨ (((refl⟩∘⟨ +-unique id-comm-sym id-comm-sym) ⟩∘⟨refl) ⟩∘⟨refl) ⟩
|
||||
(((swap ∘ from) ∘ id) ∘ to) ∘ swap ≈⟨ ((identityʳ ⟩∘⟨refl) ⟩∘⟨refl) ⟩
|
||||
((swap ∘ from) ∘ to) ∘ swap ≈⟨ (pullʳ isoʳ ⟩∘⟨refl) ⟩
|
||||
(swap ∘ id) ∘ swap ≈⟨ (identityʳ ⟩∘⟨refl) ⟩
|
||||
swap ∘ swap ≈⟨ swap∘swap ⟩
|
||||
id ∎
|
||||
}
|
||||
}
|
||||
where
|
||||
open _≅_ (distributeˡ {A} {B} {C})
|
||||
open HomReasoning
|
||||
open Equiv
|
||||
open MR 𝒞
|
||||
|
|
|
@ -8,19 +8,20 @@ open import Categories.Functor.Algebra
|
|||
open import Categories.Object.Product
|
||||
open import Categories.Object.Coproduct
|
||||
open import Categories.Category
|
||||
open import Distributive.Bundle
|
||||
open import Distributive.Core
|
||||
open import Categories.Category.Cartesian
|
||||
open import Categories.Category.BinaryProducts
|
||||
open import Categories.Category.Cocartesian
|
||||
open import Extensive.Bundle
|
||||
open import Extensive.Core
|
||||
|
||||
private
|
||||
variable
|
||||
o ℓ e : Level
|
||||
|
||||
|
||||
module _ (D : DistributiveCategory o ℓ e) where
|
||||
open DistributiveCategory D renaming (U to C; id to idC)
|
||||
module _ (D : ExtensiveDistributiveCategory o ℓ e) where
|
||||
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
|
||||
open Cocartesian cocartesian
|
||||
open Cartesian cartesian
|
||||
|
||||
|
|
|
@ -16,6 +16,9 @@ open import Categories.Category
|
|||
open import ElgotAlgebra
|
||||
open import Distributive.Bundle
|
||||
open import Distributive.Core
|
||||
open import Extensive.Bundle
|
||||
open import Extensive.Core
|
||||
open import Categories.Morphism
|
||||
|
||||
module ElgotAlgebras where
|
||||
|
||||
|
@ -23,15 +26,11 @@ private
|
|||
variable
|
||||
o ℓ e : Level
|
||||
|
||||
module _ (D : DistributiveCategory o ℓ e) where
|
||||
open DistributiveCategory D renaming (U to C; id to idC)
|
||||
module _ (D : ExtensiveDistributiveCategory o ℓ e) where
|
||||
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
|
||||
open Cocartesian cocartesian
|
||||
|
||||
CC : CocartesianCategory o ℓ e
|
||||
CC = record
|
||||
{ U = C
|
||||
; cocartesian = cocartesian
|
||||
}
|
||||
open Cartesian cartesian
|
||||
open BinaryProducts products
|
||||
|
||||
--*
|
||||
-- let's define the category of elgot-algebras
|
||||
|
@ -116,15 +115,15 @@ module _ (D : DistributiveCategory o ℓ e) where
|
|||
open Equiv
|
||||
|
||||
-- if the carriers of the algebra form a product, so do the algebras
|
||||
A×B-Helper : ∀ {EA EB : Elgot-Algebra D} → Product C (Elgot-Algebra.A EA) (Elgot-Algebra.A EB) → Elgot-Algebra D
|
||||
A×B-Helper {EA} {EB} p = record
|
||||
A×B-Helper : ∀ {EA EB : Elgot-Algebra D} → Elgot-Algebra D
|
||||
A×B-Helper {EA} {EB} = record
|
||||
{ A = A × B
|
||||
; _# = λ {X : Obj} (h : X ⇒ A×B + X) → ⟨ ((π₁ +₁ idC) ∘ h)#ᵃ , ((π₂ +₁ idC) ∘ h)#ᵇ ⟩
|
||||
; #-Fixpoint = λ {X} {f} → begin
|
||||
⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint ⟩
|
||||
⟨ [ idC , ((π₁ +₁ idC) ∘ f)#ᵃ ] ∘ ((π₁ +₁ idC) ∘ f) , [ idC , ((π₂ +₁ idC) ∘ f)#ᵇ ] ∘ ((π₂ +₁ idC) ∘ f) ⟩ ≈⟨ ⟨⟩-cong₂ sym-assoc sym-assoc ⟩
|
||||
⟨ ([ idC , ((π₁ +₁ idC) ∘ f)#ᵃ ] ∘ (π₁ +₁ idC)) ∘ f , ([ idC , ((π₂ +₁ idC) ∘ f)#ᵇ ] ∘ (π₂ +₁ idC)) ∘ f ⟩ ≈⟨ ⟨⟩-cong₂ (∘-resp-≈ˡ []∘+₁) (∘-resp-≈ˡ []∘+₁) ⟩
|
||||
⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] ∘ f , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ∘ f ⟩ ≈⟨ sym ∘-distribʳ-⟨⟩ ⟩
|
||||
⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] ∘ f , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ∘ f ⟩ ≈⟨ sym ⟨⟩∘ ⟩
|
||||
(⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ∘ f) ≈⟨ ∘-resp-≈ˡ (unique′
|
||||
(begin
|
||||
π₁ ∘ ⟨ [ idC ∘ π₁ , ((π₁ +₁ idC) ∘ f)#ᵃ ∘ idC ] , [ idC ∘ π₂ , ((π₂ +₁ idC) ∘ f)#ᵇ ∘ idC ] ⟩ ≈⟨ project₁ ⟩
|
||||
|
@ -183,8 +182,8 @@ module _ (D : DistributiveCategory o ℓ e) where
|
|||
where
|
||||
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
|
||||
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
|
||||
open Product C p
|
||||
open HomReasoning
|
||||
-- open Product (product {A} {B})
|
||||
open Equiv
|
||||
foldingˡ : ∀ {X} {Y} {f} {h} → (((π₁ +₁ idC) ∘ (⟨ ((π₁ +₁ idC) ∘ f)#ᵃ , ((π₂ +₁ idC) ∘ f)#ᵇ ⟩ +₁ h))#ᵃ) ≈ ((π₁ +₁ idC) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ])#ᵃ
|
||||
foldingˡ {X} {Y} {f} {h} = begin
|
||||
|
@ -213,9 +212,9 @@ module _ (D : DistributiveCategory o ℓ e) where
|
|||
(([ (π₂ +₁ idC) ∘ (idC +₁ i₁) ∘ f , (π₂ +₁ idC) ∘ i₂ ∘ h ])#ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ∘[]) ⟩
|
||||
((π₂ +₁ idC) ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ])#ᵇ ∎
|
||||
|
||||
Product-Elgot-Algebras : ∀ (EA EB : Elgot-Algebra D) → Product C (Elgot-Algebra.A EA) (Elgot-Algebra.A EB) → Product Elgot-Algebras EA EB
|
||||
Product-Elgot-Algebras EA EB p = record
|
||||
{ A×B = A×B-Helper {EA} {EB} p
|
||||
Product-Elgot-Algebras : ∀ (EA EB : Elgot-Algebra D) → Product Elgot-Algebras EA EB
|
||||
Product-Elgot-Algebras EA EB = record
|
||||
{ A×B = A×B-Helper {EA} {EB}
|
||||
; π₁ = record { h = π₁ ; preserves = λ {X} {f} → project₁ }
|
||||
; π₂ = record { h = π₂ ; preserves = λ {X} {f} → project₂ }
|
||||
; ⟨_,_⟩ = λ {E} f g → let
|
||||
|
@ -223,7 +222,7 @@ module _ (D : DistributiveCategory o ℓ e) where
|
|||
open Elgot-Algebra-Morphism g renaming (h to g′; preserves to preservesᵍ)
|
||||
open Elgot-Algebra E renaming (_# to _#ᵉ) in record { h = ⟨ f′ , g′ ⟩ ; preserves = λ {X} {h} →
|
||||
begin
|
||||
⟨ f′ , g′ ⟩ ∘ (h #ᵉ) ≈⟨ ∘-distribʳ-⟨⟩ ⟩
|
||||
⟨ f′ , g′ ⟩ ∘ (h #ᵉ) ≈⟨ ⟨⟩∘ ⟩
|
||||
⟨ f′ ∘ (h #ᵉ) , g′ ∘ (h #ᵉ) ⟩ ≈⟨ ⟨⟩-cong₂ preservesᶠ preservesᵍ ⟩
|
||||
⟨ ((f′ +₁ idC) ∘ h) #ᵃ , ((g′ +₁ idC) ∘ h) #ᵇ ⟩ ≈⟨ sym (⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₁ identity²))) (#ᵇ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₂ identity²)))) ⟩
|
||||
⟨ ((π₁ ∘ ⟨ f′ , g′ ⟩ +₁ idC ∘ idC) ∘ h) #ᵃ , ((π₂ ∘ ⟨ f′ , g′ ⟩ +₁ idC ∘ idC) ∘ h) #ᵇ ⟩ ≈⟨ sym (⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)) (#ᵇ-resp-≈ (∘-resp-≈ˡ +₁∘+₁))) ⟩
|
||||
|
@ -236,32 +235,32 @@ module _ (D : DistributiveCategory o ℓ e) where
|
|||
where
|
||||
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
|
||||
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
|
||||
open Elgot-Algebra (A×B-Helper {EA} {EB} p) using () renaming (_# to _#ᵖ)
|
||||
open Product C p
|
||||
open Elgot-Algebra (A×B-Helper {EA} {EB}) using () renaming (_# to _#ᵖ)
|
||||
open HomReasoning
|
||||
open Equiv
|
||||
|
||||
|
||||
-- if the carrier is cartesian, so is the category of algebras
|
||||
Cartesian-Elgot-Algebras : Cartesian C → Cartesian Elgot-Algebras
|
||||
Cartesian-Elgot-Algebras CaC = record {
|
||||
Cartesian-Elgot-Algebras : Cartesian Elgot-Algebras
|
||||
Cartesian-Elgot-Algebras = record {
|
||||
terminal = Terminal-Elgot-Algebras terminal;
|
||||
products = record { product = λ {EA EB} → Product-Elgot-Algebras EA EB product }
|
||||
products = record { product = λ {EA EB} → Product-Elgot-Algebras EA EB }
|
||||
}
|
||||
where
|
||||
open Cartesian CaC using (terminal; products)
|
||||
open BinaryProducts products using (product)
|
||||
open Equiv
|
||||
|
||||
-- if the carriers of the algebra form a exponential, so do the algebras
|
||||
B^A-Helper : ∀ {EA EB : Elgot-Algebra D} → Exponential C (Elgot-Algebra.A EA) (Elgot-Algebra.A EB) → Elgot-Algebra D
|
||||
B^A-Helper {EA} {EB} e = record
|
||||
{ A = B^A
|
||||
; _# = λ {X} f → λg {! !} {! !}
|
||||
; #-Fixpoint = {! !}
|
||||
B^A-Helper : ∀ {EA : Elgot-Algebra D} {X : Obj} → Exponential C X (Elgot-Algebra.A EA) → Elgot-Algebra D
|
||||
B^A-Helper {EA} {X} exp = record
|
||||
{ A = A^X
|
||||
; _# = λ {Z} f → λg product (((((eval +₁ idC) ∘ (Categories.Object.Product.repack C product product' +₁ idC)) ∘ dstl) ∘ (f ⁂ idC)) #ᵃ)
|
||||
; #-Fixpoint = λ {X} {f} → {! !}
|
||||
; #-Uniformity = {! !}
|
||||
; #-Folding = {! !}
|
||||
; #-resp-≈ = {! !}
|
||||
}
|
||||
where
|
||||
open Exponential e
|
||||
open Exponential exp renaming (B^A to A^X; product to product')
|
||||
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
|
||||
dstr = λ {X Y Z} → _≅_.to (distributeˡ {X} {Y} {Z})
|
||||
dstl = λ {X Y Z} → _≅_.to (distributeʳ {X} {Y} {Z})
|
31
Extensive/Bundle.agda
Normal file
31
Extensive/Bundle.agda
Normal file
|
@ -0,0 +1,31 @@
|
|||
{-# OPTIONS --without-K --safe #-}
|
||||
|
||||
open import Categories.Category
|
||||
open import Categories.Category.Cartesian
|
||||
open import Categories.Category.BinaryProducts
|
||||
open import Categories.Category.Cocartesian
|
||||
open import Distributive.Core
|
||||
open import Extensive.Core
|
||||
import Categories.Morphism as M
|
||||
|
||||
module Extensive.Bundle where
|
||||
|
||||
open import Level
|
||||
|
||||
record ExtensiveCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
|
||||
field
|
||||
U : Category o ℓ e
|
||||
extensive : Extensive U
|
||||
|
||||
open Category U public
|
||||
open Extensive extensive public
|
||||
|
||||
record ExtensiveDistributiveCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
|
||||
field
|
||||
U : Category o ℓ e
|
||||
cartesian : Cartesian U
|
||||
extensive : Extensive U
|
||||
|
||||
open Category U public
|
||||
open Extensive extensive public
|
||||
open Distributive (Extensive⇒Distributive cartesian extensive) public
|
99
Extensive/Core.agda
Normal file
99
Extensive/Core.agda
Normal file
|
@ -0,0 +1,99 @@
|
|||
{-# OPTIONS --without-K --safe #-}
|
||||
|
||||
module Extensive.Core where
|
||||
|
||||
-- https://ncatlab.org/nlab/show/extensive+category
|
||||
|
||||
open import Level
|
||||
|
||||
open import Categories.Category.Core
|
||||
open import Distributive.Core
|
||||
open import Categories.Diagram.Pullback
|
||||
open import Categories.Category.Cocartesian
|
||||
open import Categories.Category.Cartesian
|
||||
open import Categories.Category.BinaryProducts
|
||||
open import Categories.Object.Coproduct
|
||||
open import Categories.Morphism
|
||||
open import Function using (_$_)
|
||||
open import Coproduct
|
||||
|
||||
|
||||
private
|
||||
variable
|
||||
o ℓ e : Level
|
||||
|
||||
record Extensive (𝒞 : Category o ℓ e) : Set (suc (o ⊔ ℓ ⊔ e)) where
|
||||
open Category 𝒞
|
||||
open Pullback
|
||||
|
||||
field
|
||||
cocartesian : Cocartesian 𝒞
|
||||
|
||||
module CC = Cocartesian cocartesian
|
||||
open CC using (_+_; i₁; i₂; ¡)
|
||||
|
||||
field
|
||||
-- top-row is coproduct ⇒ pullback
|
||||
cp⇒pullback₁ : {A B C D : Obj} (cp : Coproduct 𝒞 A B) (p₂ : A ⇒ C) (f : Coproduct.A+B cp ⇒ C + D) → IsPullback 𝒞 (Coproduct.i₁ cp) p₂ f i₁
|
||||
cp⇒pullback₂ : {A B C D : Obj} (cp : Coproduct 𝒞 A B) (p₂ : B ⇒ D) (f : Coproduct.A+B cp ⇒ C + D) → IsPullback 𝒞 (Coproduct.i₂ cp) p₂ f i₂
|
||||
|
||||
-- pullbacks ⇒ top-row is coproduct
|
||||
pullbacks⇒cp : {A B C : Obj} {f : A ⇒ B + C} (P₁ : Pullback 𝒞 f i₁) (P₂ : Pullback 𝒞 f i₂) → IsCoproduct 𝒞 (Pullback.p₁ P₁) (Pullback.p₁ P₂)
|
||||
|
||||
Extensive⇒Distributive : ∀ {𝒞 : Category o ℓ e} → (cartesian : Cartesian 𝒞) → (E : Extensive 𝒞) → Distributive 𝒞 cartesian (Extensive.cocartesian E)
|
||||
Extensive⇒Distributive {𝒞 = 𝒞} cartesian E = record
|
||||
{ distributeˡ = λ {A} {B} {C} → ≅-sym 𝒞 $ iso {A} {B} {C}
|
||||
}
|
||||
where
|
||||
open Category 𝒞
|
||||
open Extensive E
|
||||
open Cocartesian cocartesian
|
||||
open Cartesian cartesian
|
||||
open BinaryProducts products
|
||||
open HomReasoning
|
||||
open Equiv
|
||||
open ≅ using () renaming (sym to ≅-sym)
|
||||
pb₁ : ∀ {A B C} → Pullback 𝒞 (π₂ {A = A} {B = B + C}) i₁
|
||||
pb₁ {A} {B} {C} = record { P = A × B ; p₁ = id ⁂ i₁ ; p₂ = π₂ ; isPullback = record
|
||||
{ commute = π₂∘⁂
|
||||
; universal = λ {X} {h₁} {h₂} H → ⟨ π₁ ∘ h₁ , h₂ ⟩
|
||||
; unique = λ {X} {h₁} {h₂} {i} {eq} H1 H2 → sym (unique (sym $
|
||||
begin
|
||||
π₁ ∘ h₁ ≈⟨ ∘-resp-≈ʳ (sym H1) ⟩
|
||||
(π₁ ∘ (id ⁂ i₁) ∘ i) ≈⟨ sym-assoc ⟩
|
||||
((π₁ ∘ (id ⁂ i₁)) ∘ i) ≈⟨ ∘-resp-≈ˡ π₁∘⁂ ⟩
|
||||
((id ∘ π₁) ∘ i) ≈⟨ ∘-resp-≈ˡ identityˡ ⟩
|
||||
π₁ ∘ i ∎) H2)
|
||||
; p₁∘universal≈h₁ = λ {X} {h₁} {h₂} {eq} →
|
||||
begin
|
||||
(id ⁂ i₁) ∘ ⟨ π₁ ∘ h₁ , h₂ ⟩ ≈⟨ ⁂∘⟨⟩ ⟩
|
||||
⟨ id ∘ π₁ ∘ h₁ , i₁ ∘ h₂ ⟩ ≈⟨ ⟨⟩-congʳ identityˡ ⟩
|
||||
⟨ π₁ ∘ h₁ , i₁ ∘ h₂ ⟩ ≈⟨ ⟨⟩-congˡ (sym eq) ⟩
|
||||
⟨ π₁ ∘ h₁ , π₂ ∘ h₁ ⟩ ≈⟨ g-η ⟩
|
||||
h₁ ∎
|
||||
; p₂∘universal≈h₂ = λ {X} {h₁} {h₂} {eq} → project₂
|
||||
} }
|
||||
pb₂ : ∀ {A B C} → Pullback 𝒞 (π₂ {A = A} {B = B + C}) i₂
|
||||
pb₂ {A} {B} {C} = record { P = A × C ; p₁ = id ⁂ i₂ ; p₂ = π₂ ; isPullback = record
|
||||
{ commute = π₂∘⁂
|
||||
; universal = λ {X} {h₁} {h₂} H → ⟨ π₁ ∘ h₁ , h₂ ⟩
|
||||
; unique = λ {X} {h₁} {h₂} {i} {eq} H1 H2 → sym (unique (sym $
|
||||
begin
|
||||
π₁ ∘ h₁ ≈⟨ ∘-resp-≈ʳ (sym H1) ⟩
|
||||
(π₁ ∘ (id ⁂ i₂) ∘ i) ≈⟨ sym-assoc ⟩
|
||||
((π₁ ∘ (id ⁂ i₂)) ∘ i) ≈⟨ ∘-resp-≈ˡ π₁∘⁂ ⟩
|
||||
((id ∘ π₁) ∘ i) ≈⟨ ∘-resp-≈ˡ identityˡ ⟩
|
||||
π₁ ∘ i ∎) H2)
|
||||
; p₁∘universal≈h₁ = λ {X} {h₁} {h₂} {eq} →
|
||||
begin
|
||||
(id ⁂ i₂) ∘ ⟨ π₁ ∘ h₁ , h₂ ⟩ ≈⟨ ⁂∘⟨⟩ ⟩
|
||||
⟨ id ∘ π₁ ∘ h₁ , i₂ ∘ h₂ ⟩ ≈⟨ ⟨⟩-congʳ identityˡ ⟩
|
||||
⟨ π₁ ∘ h₁ , i₂ ∘ h₂ ⟩ ≈⟨ ⟨⟩-congˡ (sym eq) ⟩
|
||||
⟨ π₁ ∘ h₁ , π₂ ∘ h₁ ⟩ ≈⟨ g-η ⟩
|
||||
h₁ ∎
|
||||
; p₂∘universal≈h₂ = λ {X} {h₁} {h₂} {eq} → project₂
|
||||
} }
|
||||
cp₁ : ∀ {A B C : Obj} → IsCoproduct 𝒞 {A+B = A × (B + C)} (id ⁂ i₁) (id ⁂ i₂)
|
||||
cp₁ {A} {B} {C} = pullbacks⇒cp pb₁ pb₂
|
||||
cp₂ = λ {A B C : Obj} → coproduct {A × B} {A × C}
|
||||
iso = λ {A B C : Obj} → Coproduct.up-to-iso 𝒞 (IsCoproduct⇒Coproduct 𝒞 (cp₁ {A} {B} {C})) cp₂
|
|
@ -1,3 +1,3 @@
|
|||
name: bsc
|
||||
include: .
|
||||
depend: standard-library, agda-categories
|
||||
depend: standard-library agda-categories
|
Loading…
Reference in a new issue