Added distributive and extensive category definitions, added coproduct definitions

This commit is contained in:
Leon Vatthauer 2023-07-30 17:47:06 +02:00
parent bc9afcd8eb
commit ae16aea8b4
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
8 changed files with 252 additions and 44 deletions

47
Coproduct.agda Normal file
View file

@ -0,0 +1,47 @@
{-# OPTIONS --without-K --safe #-}
open import Categories.Category hiding (_[_,_])
open import Level
open import Function using (_$_)
module Coproduct {o e} (𝒞 : Category o e) where
open Category 𝒞
open import Categories.Morphism.Reasoning 𝒞
open import Categories.Morphism 𝒞
open HomReasoning
open import Categories.Object.Coproduct
private
variable
A B C D : Obj
f g h : A B
module _ {A B : Obj} where
open Coproduct {𝒞 = 𝒞} {A = A} {B = B} renaming ([_,_] to _[_,_])
repack : (p₁ p₂ : Coproduct 𝒞 A B) A+B p₁ A+B p₂
repack p₁ p₂ = p₁ [ i₁ p₂ , i₂ p₂ ]
repack∘ : (p₁ p₂ p₃ : Coproduct 𝒞 A B) repack p₂ p₃ repack p₁ p₂ repack p₁ p₃
repack∘ p₁ p₂ p₃ = $ unique p₁
(glueTrianglesˡ (inject₁ p₂) (inject₁ p₁))
(glueTrianglesˡ (inject₂ p₂) (inject₂ p₁))
repack≡id : (p : Coproduct 𝒞 A B) repack p p id
repack≡id = η
repack-cancel : (p₁ p₂ : Coproduct 𝒞 A B) repack p₁ p₂ repack p₂ p₁ id
repack-cancel p₁ p₂ = repack∘ p₂ p₁ p₂ repack≡id p₂
up-to-iso : (p₁ p₂ : Coproduct 𝒞 A B) Coproduct.A+B p₁ Coproduct.A+B p₂
up-to-iso p₁ p₂ = record
{ from = repack p₁ p₂
; to = repack p₂ p₁
; iso = record
{ isoˡ = repack-cancel p₂ p₁
; isoʳ = repack-cancel p₁ p₂
}
}

View file

@ -14,7 +14,9 @@ open import Level
record DistributiveCategory o e : Set (suc (o e)) where
field
U : Category o e
distributive : Distributive U
cartesian : Cartesian U
cocartesian : Cocartesian U
distributive : Distributive U cartesian cocartesian
open Category U public
open Distributive distributive public

View file

@ -5,6 +5,7 @@ open import Categories.Category.Cartesian
open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian
import Categories.Morphism as M
import Categories.Morphism.Reasoning as MR
module Distributive.Core {o e} (𝒞 : Category o e) where
@ -12,17 +13,45 @@ open import Level
open Category 𝒞
open M 𝒞
record Distributive : Set (levelOfTerm 𝒞) where
field
cartesian : Cartesian 𝒞
cocartesian : Cocartesian 𝒞
private
variable
A B C : Obj
record Distributive (cartesian : Cartesian 𝒞) (cocartesian : Cocartesian 𝒞) : Set (levelOfTerm 𝒞) where
open Cartesian cartesian
open BinaryProducts products
open Cocartesian cocartesian
distribute : {A B C} (A × B + A × C) (A × (B + C))
distribute = [ id i₁ , id i₂ ]
field
iso : {A B C} IsIso (distribute {A} {B} {C})
distributeˡ : (A × B + A × C) (A × (B + C))
distributeʳ : {A B C : Obj} (B × A + C × A) (B + C) × A
distributeʳ {A} {B} {C} = record
{ from = (swap from) (swap +₁ swap)
; to = ((swap +₁ swap) to) swap
; iso = record
{ isoˡ = begin
(((swap +₁ swap) to) swap) (swap from) (swap +₁ swap) ≈⟨ pullˡ (pullˡ (pullʳ swap∘swap))
((((swap +₁ swap) to) id) from) (swap +₁ swap) ≈⟨ identityʳ ⟩∘⟨refl ⟩∘⟨refl
(((swap +₁ swap) to) from) (swap +₁ swap) ≈⟨ pullʳ isoˡ ⟩∘⟨refl
((swap +₁ swap) id) (swap +₁ swap) ≈⟨ identityʳ ⟩∘⟨refl
(swap +₁ swap) (swap +₁ swap) ≈⟨ +₁∘+₁
((swap swap) +₁ (swap swap)) ≈⟨ +₁-cong₂ swap∘swap swap∘swap
(id +₁ id) ≈⟨ +-unique id-comm-sym id-comm-sym
id
; isoʳ = begin
((swap from) (swap +₁ swap)) ((swap +₁ swap) to) swap ≈⟨ pullˡ (pullˡ (pullʳ +₁∘+₁))
(((swap from) ((swap swap) +₁ (swap swap))) to) swap ≈⟨ (((refl⟩∘⟨ +₁-cong₂ swap∘swap swap∘swap) ⟩∘⟨refl) ⟩∘⟨refl)
(((swap from) (id +₁ id)) to) swap ≈⟨ (((refl⟩∘⟨ +-unique id-comm-sym id-comm-sym) ⟩∘⟨refl) ⟩∘⟨refl)
(((swap from) id) to) swap ≈⟨ ((identityʳ ⟩∘⟨refl) ⟩∘⟨refl)
((swap from) to) swap ≈⟨ (pullʳ isoʳ ⟩∘⟨refl)
(swap id) swap ≈⟨ (identityʳ ⟩∘⟨refl)
swap swap ≈⟨ swap∘swap
id
}
}
where
open _≅_ (distributeˡ {A} {B} {C})
open HomReasoning
open Equiv
open MR 𝒞

View file

@ -8,19 +8,20 @@ open import Categories.Functor.Algebra
open import Categories.Object.Product
open import Categories.Object.Coproduct
open import Categories.Category
open import Distributive.Bundle
open import Distributive.Core
open import Categories.Category.Cartesian
open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian
open import Extensive.Bundle
open import Extensive.Core
private
variable
o e : Level
module _ (D : DistributiveCategory o e) where
open DistributiveCategory D renaming (U to C; id to idC)
module _ (D : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
open Cocartesian cocartesian
open Cartesian cartesian

View file

@ -16,6 +16,9 @@ open import Categories.Category
open import ElgotAlgebra
open import Distributive.Bundle
open import Distributive.Core
open import Extensive.Bundle
open import Extensive.Core
open import Categories.Morphism
module ElgotAlgebras where
@ -23,15 +26,11 @@ private
variable
o e : Level
module _ (D : DistributiveCategory o e) where
open DistributiveCategory D renaming (U to C; id to idC)
module _ (D : ExtensiveDistributiveCategory o e) where
open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
open Cocartesian cocartesian
CC : CocartesianCategory o e
CC = record
{ U = C
; cocartesian = cocartesian
}
open Cartesian cartesian
open BinaryProducts products
--*
-- let's define the category of elgot-algebras
@ -116,15 +115,15 @@ module _ (D : DistributiveCategory o e) where
open Equiv
-- if the carriers of the algebra form a product, so do the algebras
A×B-Helper : {EA EB : Elgot-Algebra D} Product C (Elgot-Algebra.A EA) (Elgot-Algebra.A EB) Elgot-Algebra D
A×B-Helper {EA} {EB} p = record
{ A = A×B
A×B-Helper : {EA EB : Elgot-Algebra D} Elgot-Algebra D
A×B-Helper {EA} {EB} = record
{ A = A × B
; _# = λ {X : Obj} (h : X A×B + X) ((π₁ +₁ idC) h)#ᵃ , ((π₂ +₁ idC) h)#ᵇ
; #-Fixpoint = λ {X} {f} begin
((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint
[ idC , ((π₁ +₁ idC) f)#ᵃ ] ((π₁ +₁ idC) f) , [ idC , ((π₂ +₁ idC) f)#ᵇ ] ((π₂ +₁ idC) f) ≈⟨ ⟨⟩-cong₂ sym-assoc sym-assoc
([ idC , ((π₁ +₁ idC) f)#ᵃ ] (π₁ +₁ idC)) f , ([ idC , ((π₂ +₁ idC) f)#ᵇ ] (π₂ +₁ idC)) f ≈⟨ ⟨⟩-cong₂ (∘-resp-≈ˡ []∘+₁) (∘-resp-≈ˡ []∘+₁)
[ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] f , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f ≈⟨ sym ∘-distribʳ-⟨⟩
[ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] f , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f ≈⟨ sym ⟨⟩
( [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f) ≈⟨ ∘-resp-≈ˡ (unique
(begin
π₁ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₁
@ -183,8 +182,8 @@ module _ (D : DistributiveCategory o e) where
where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
open Product C p
open HomReasoning
-- open Product (product {A} {B})
open Equiv
foldingˡ : {X} {Y} {f} {h} (((π₁ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵃ) ((π₁ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵃ
foldingˡ {X} {Y} {f} {h} = begin
@ -213,9 +212,9 @@ module _ (D : DistributiveCategory o e) where
(([ (π₂ +₁ idC) (idC +₁ i₁) f , (π₂ +₁ idC) i₂ h ])#ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ∘[])
((π₂ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵇ
Product-Elgot-Algebras : (EA EB : Elgot-Algebra D) Product C (Elgot-Algebra.A EA) (Elgot-Algebra.A EB) Product Elgot-Algebras EA EB
Product-Elgot-Algebras EA EB p = record
{ A×B = A×B-Helper {EA} {EB} p
Product-Elgot-Algebras : (EA EB : Elgot-Algebra D) Product Elgot-Algebras EA EB
Product-Elgot-Algebras EA EB = record
{ A×B = A×B-Helper {EA} {EB}
; π₁ = record { h = π₁ ; preserves = λ {X} {f} project₁ }
; π₂ = record { h = π₂ ; preserves = λ {X} {f} project₂ }
; ⟨_,_⟩ = λ {E} f g let
@ -223,7 +222,7 @@ module _ (D : DistributiveCategory o e) where
open Elgot-Algebra-Morphism g renaming (h to g; preserves to preservesᵍ)
open Elgot-Algebra E renaming (_# to _#ᵉ) in record { h = f , g ; preserves = λ {X} {h}
begin
f , g (h #ᵉ) ≈⟨ ∘-distribʳ-⟨⟩
f , g (h #ᵉ) ≈⟨ ⟨⟩
f (h #ᵉ) , g (h #ᵉ) ≈⟨ ⟨⟩-cong₂ preservesᶠ preservesᵍ
((f +₁ idC) h) #ᵃ , ((g +₁ idC) h) #ᵇ ≈⟨ sym (⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₁ identity²))) (#ᵇ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₂ identity²))))
((π₁ f , g +₁ idC idC) h) #ᵃ , ((π₂ f , g +₁ idC idC) h) #ᵇ ≈⟨ sym (⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)) (#ᵇ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)))
@ -236,32 +235,32 @@ module _ (D : DistributiveCategory o e) where
where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
open Elgot-Algebra (A×B-Helper {EA} {EB} p) using () renaming (_# to _#ᵖ)
open Product C p
open Elgot-Algebra (A×B-Helper {EA} {EB}) using () renaming (_# to _#ᵖ)
open HomReasoning
open Equiv
-- if the carrier is cartesian, so is the category of algebras
Cartesian-Elgot-Algebras : Cartesian C Cartesian Elgot-Algebras
Cartesian-Elgot-Algebras CaC = record {
Cartesian-Elgot-Algebras : Cartesian Elgot-Algebras
Cartesian-Elgot-Algebras = record {
terminal = Terminal-Elgot-Algebras terminal;
products = record { product = λ {EA EB} Product-Elgot-Algebras EA EB product }
products = record { product = λ {EA EB} Product-Elgot-Algebras EA EB }
}
where
open Cartesian CaC using (terminal; products)
open BinaryProducts products using (product)
open Equiv
-- if the carriers of the algebra form a exponential, so do the algebras
B^A-Helper : {EA EB : Elgot-Algebra D} Exponential C (Elgot-Algebra.A EA) (Elgot-Algebra.A EB) Elgot-Algebra D
B^A-Helper {EA} {EB} e = record
{ A = B^A
; _# = λ {X} f λg {! !} {! !}
; #-Fixpoint = {! !}
B^A-Helper : {EA : Elgot-Algebra D} {X : Obj} Exponential C X (Elgot-Algebra.A EA) Elgot-Algebra D
B^A-Helper {EA} {X} exp = record
{ A = A^X
; _# = λ {Z} f λg product (((((eval +₁ idC) (Categories.Object.Product.repack C product product' +₁ idC)) dstl) (f idC)) #ᵃ)
; #-Fixpoint = λ {X} {f} {! !}
; #-Uniformity = {! !}
; #-Folding = {! !}
; #-resp-≈ = {! !}
}
where
open Exponential e
open Exponential exp renaming (B^A to A^X; product to product')
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
dstr = λ {X Y Z} _≅_.to (distributeˡ {X} {Y} {Z})
dstl = λ {X Y Z} _≅_.to (distributeʳ {X} {Y} {Z})

31
Extensive/Bundle.agda Normal file
View file

@ -0,0 +1,31 @@
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Category.Cartesian
open import Categories.Category.BinaryProducts
open import Categories.Category.Cocartesian
open import Distributive.Core
open import Extensive.Core
import Categories.Morphism as M
module Extensive.Bundle where
open import Level
record ExtensiveCategory o e : Set (suc (o e)) where
field
U : Category o e
extensive : Extensive U
open Category U public
open Extensive extensive public
record ExtensiveDistributiveCategory o e : Set (suc (o e)) where
field
U : Category o e
cartesian : Cartesian U
extensive : Extensive U
open Category U public
open Extensive extensive public
open Distributive (Extensive⇒Distributive cartesian extensive) public

99
Extensive/Core.agda Normal file
View file

@ -0,0 +1,99 @@
{-# OPTIONS --without-K --safe #-}
module Extensive.Core where
-- https://ncatlab.org/nlab/show/extensive+category
open import Level
open import Categories.Category.Core
open import Distributive.Core
open import Categories.Diagram.Pullback
open import Categories.Category.Cocartesian
open import Categories.Category.Cartesian
open import Categories.Category.BinaryProducts
open import Categories.Object.Coproduct
open import Categories.Morphism
open import Function using (_$_)
open import Coproduct
private
variable
o e : Level
record Extensive (𝒞 : Category o e) : Set (suc (o e)) where
open Category 𝒞
open Pullback
field
cocartesian : Cocartesian 𝒞
module CC = Cocartesian cocartesian
open CC using (_+_; i₁; i₂; ¡)
field
-- top-row is coproduct ⇒ pullback
cp⇒pullback₁ : {A B C D : Obj} (cp : Coproduct 𝒞 A B) (p₂ : A C) (f : Coproduct.A+B cp C + D) IsPullback 𝒞 (Coproduct.i₁ cp) p₂ f i₁
cp⇒pullback₂ : {A B C D : Obj} (cp : Coproduct 𝒞 A B) (p₂ : B D) (f : Coproduct.A+B cp C + D) IsPullback 𝒞 (Coproduct.i₂ cp) p₂ f i₂
-- pullbacks ⇒ top-row is coproduct
pullbacks⇒cp : {A B C : Obj} {f : A B + C} (P₁ : Pullback 𝒞 f i₁) (P₂ : Pullback 𝒞 f i₂) IsCoproduct 𝒞 (Pullback.p₁ P₁) (Pullback.p₁ P₂)
Extensive⇒Distributive : {𝒞 : Category o e} (cartesian : Cartesian 𝒞) (E : Extensive 𝒞) Distributive 𝒞 cartesian (Extensive.cocartesian E)
Extensive⇒Distributive {𝒞 = 𝒞} cartesian E = record
{ distributeˡ = λ {A} {B} {C} ≅-sym 𝒞 $ iso {A} {B} {C}
}
where
open Category 𝒞
open Extensive E
open Cocartesian cocartesian
open Cartesian cartesian
open BinaryProducts products
open HomReasoning
open Equiv
open using () renaming (sym to ≅-sym)
pb₁ : {A B C} Pullback 𝒞 (π₂ {A = A} {B = B + C}) i₁
pb₁ {A} {B} {C} = record { P = A × B ; p₁ = id i₁ ; p₂ = π₂ ; isPullback = record
{ commute = π₂∘⁂
; universal = λ {X} {h₁} {h₂} H π₁ h₁ , h₂
; unique = λ {X} {h₁} {h₂} {i} {eq} H1 H2 sym (unique (sym $
begin
π₁ h₁ ≈⟨ ∘-resp-≈ʳ (sym H1)
(π₁ (id i₁) i) ≈⟨ sym-assoc
((π₁ (id i₁)) i) ≈⟨ ∘-resp-≈ˡ π₁∘⁂
((id π₁) i) ≈⟨ ∘-resp-≈ˡ identityˡ
π₁ i ) H2)
; p₁∘universal≈h₁ = λ {X} {h₁} {h₂} {eq}
begin
(id i₁) π₁ h₁ , h₂ ≈⟨ ⁂∘⟨⟩
id π₁ h₁ , i₁ h₂ ≈⟨ ⟨⟩-congʳ identityˡ
π₁ h₁ , i₁ h₂ ≈⟨ ⟨⟩-congˡ (sym eq)
π₁ h₁ , π₂ h₁ ≈⟨ g-η
h₁
; p₂∘universal≈h₂ = λ {X} {h₁} {h₂} {eq} project₂
} }
pb₂ : {A B C} Pullback 𝒞 (π₂ {A = A} {B = B + C}) i₂
pb₂ {A} {B} {C} = record { P = A × C ; p₁ = id i₂ ; p₂ = π₂ ; isPullback = record
{ commute = π₂∘⁂
; universal = λ {X} {h₁} {h₂} H π₁ h₁ , h₂
; unique = λ {X} {h₁} {h₂} {i} {eq} H1 H2 sym (unique (sym $
begin
π₁ h₁ ≈⟨ ∘-resp-≈ʳ (sym H1)
(π₁ (id i₂) i) ≈⟨ sym-assoc
((π₁ (id i₂)) i) ≈⟨ ∘-resp-≈ˡ π₁∘⁂
((id π₁) i) ≈⟨ ∘-resp-≈ˡ identityˡ
π₁ i ) H2)
; p₁∘universal≈h₁ = λ {X} {h₁} {h₂} {eq}
begin
(id i₂) π₁ h₁ , h₂ ≈⟨ ⁂∘⟨⟩
id π₁ h₁ , i₂ h₂ ≈⟨ ⟨⟩-congʳ identityˡ
π₁ h₁ , i₂ h₂ ≈⟨ ⟨⟩-congˡ (sym eq)
π₁ h₁ , π₂ h₁ ≈⟨ g-η
h₁
; p₂∘universal≈h₂ = λ {X} {h₁} {h₂} {eq} project₂
} }
cp₁ : {A B C : Obj} IsCoproduct 𝒞 {A+B = A × (B + C)} (id i₁) (id i₂)
cp₁ {A} {B} {C} = pullbacks⇒cp pb₁ pb₂
cp₂ = λ {A B C : Obj} coproduct {A × B} {A × C}
iso = λ {A B C : Obj} Coproduct.up-to-iso 𝒞 (IsCoproduct⇒Coproduct 𝒞 (cp₁ {A} {B} {C})) cp₂

View file

@ -1,3 +1,3 @@
name: bsc
include: .
depend: standard-library, agda-categories
depend: standard-library agda-categories