Merge branch 'main' of git8.cs.fau.de:theses/bsc-leon-vatthauer

This commit is contained in:
Leon Vatthauer 2023-08-16 14:56:39 +02:00
commit aeb00c8d3b
Signed by: leonv
SSH key fingerprint: SHA256:G4+ddwoZmhLPRB1agvXzZMXIzkVJ36dUYZXf5NxT+u8
3 changed files with 95 additions and 114 deletions

View file

@ -74,10 +74,10 @@ module _ (D : ExtensiveDistributiveCategory o e) where
#-Compositionality : {X Y} {f : X A + X} {h : Y X + Y} #-Compositionality : {X Y} {f : X A + X} {h : Y X + Y}
(((f #) +₁ idC) h)# ([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂ (((f #) +₁ idC) h)# ([ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ])# i₂
#-Compositionality {X} {Y} {f} {h} = begin #-Compositionality {X} {Y} {f} {h} = begin
(((f #) +₁ idC) h)# ≈⟨ #-Uniformity {f = ((f #) +₁ idC) h} (((f #) +₁ idC) h)# ≈⟨ #-Uniformity {f = ((f #) +₁ idC) h}
{g = (f #) +₁ h} {g = (f #) +₁ h}
{h = h} {h = h}
(trans (pullˡ +₁∘+₁) (+₁-cong₂ identityˡ identityʳ ⟩∘⟨refl)) (trans (pullˡ +₁∘+₁) (+₁-cong₂ identityˡ identityʳ ⟩∘⟨refl))
((f # +₁ h)# h) ≈˘⟨ inject₂ ((f # +₁ h)# h) ≈˘⟨ inject₂
(([ idC (f #) , (f # +₁ h)# h ] i₂)) ≈˘⟨ []∘+₁ ⟩∘⟨refl (([ idC (f #) , (f # +₁ h)# h ] i₂)) ≈˘⟨ []∘+₁ ⟩∘⟨refl
(([ idC , ((f # +₁ h)#) ] (f # +₁ h)) i₂) ≈˘⟨ #-Fixpoint {f = (f # +₁ h) } ⟩∘⟨refl (([ idC , ((f # +₁ h)#) ] (f # +₁ h)) i₂) ≈˘⟨ #-Fixpoint {f = (f # +₁ h) } ⟩∘⟨refl
@ -90,7 +90,7 @@ module _ (D : ExtensiveDistributiveCategory o e) where
([ (idC +₁ i₁) f , i₂ h ] # [ i₁ , h ] i₂) ≈˘⟨ pushˡ (#-Uniformity {f = [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ]} ([ (idC +₁ i₁) f , i₂ h ] # [ i₁ , h ] i₂) ≈˘⟨ pushˡ (#-Uniformity {f = [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ]}
{g = [ (idC +₁ i₁) f , i₂ h ]} {g = [ (idC +₁ i₁) f , i₂ h ]}
{h = [ i₁ , h ]} {h = [ i₁ , h ]}
(begin (begin
(idC +₁ [ i₁ , h ]) (idC +₁ [ i₁ , h ])
[ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ] ≈⟨ refl⟩∘⟨ ∘[] [ (idC +₁ i₁) f , i₂ i₂ ] [ i₁ , h ] ≈⟨ refl⟩∘⟨ ∘[]
(idC +₁ [ i₁ , h ]) [ [ (idC +₁ i₁) f , i₂ i₂ ] i₁ (idC +₁ [ i₁ , h ]) [ [ (idC +₁ i₁) f , i₂ i₂ ] i₁

View file

@ -1,17 +1,13 @@
open import Level renaming (suc to -suc) open import Level
open import Function using (_$_) renaming (id to idf; _∘_ to _∘ᶠ_)
open import Data.Product using (_,_) renaming (_×_ to _∧_)
open import Categories.Category.Cocartesian open import Categories.Category.Cocartesian using (Cocartesian)
open import Categories.Category.Cocartesian.Bundle open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.Cartesian open import Categories.Category.BinaryProducts using (BinaryProducts)
open import Categories.Functor renaming (id to idF) open import Categories.Functor using (Functor) renaming (id to idF)
open import Categories.Functor.Algebra open import Categories.Object.Terminal using (Terminal)
open import Categories.Object.Terminal open import Categories.Object.Product using (Product)
open import Categories.Object.Product open import Categories.Object.Coproduct using (Coproduct)
open import Categories.Object.Exponential open import Categories.Object.Exponential using (Exponential)
open import Categories.Object.Coproduct
open import Categories.Category.BinaryProducts
open import Categories.Category open import Categories.Category
open import ElgotAlgebra open import ElgotAlgebra
open import Categories.Category.Distributive open import Categories.Category.Distributive
@ -30,6 +26,10 @@ module _ (D : ExtensiveDistributiveCategory o e) where
open Cocartesian (Extensive.cocartesian extensive) open Cocartesian (Extensive.cocartesian extensive)
open Cartesian (ExtensiveDistributiveCategory.cartesian D) open Cartesian (ExtensiveDistributiveCategory.cartesian D)
open BinaryProducts products open BinaryProducts products
open M C
open MR C
open HomReasoning
open Equiv
--* --*
-- let's define the category of elgot-algebras -- let's define the category of elgot-algebras
@ -51,16 +51,10 @@ module _ (D : ExtensiveDistributiveCategory o e) where
; _⇒_ = Elgot-Algebra-Morphism ; _⇒_ = Elgot-Algebra-Morphism
; _≈_ = λ f g Elgot-Algebra-Morphism.h f Elgot-Algebra-Morphism.h g ; _≈_ = λ f g Elgot-Algebra-Morphism.h f Elgot-Algebra-Morphism.h g
; id = λ {EB} let open Elgot-Algebra EB in ; id = λ {EB} let open Elgot-Algebra EB in
record { h = idC; preserves = λ {X : Obj} {f : X A + X} begin record { h = idC; preserves = λ {X : Obj} {f : X A + X} begin
idC f # ≈⟨ identityˡ idC f # ≈⟨ identityˡ
(f #) ≈⟨ sym $ #-resp-≈ identityˡ f # ≈⟨ #-resp-≈ (introˡ (coproduct.unique id-comm-sym id-comm-sym))
((idC f) #) ≈⟨ sym (#-resp-≈ (∘-resp-≈ˡ +-η)) ((idC +₁ idC) f) # }
(([ i₁ , i₂ ] f)#) ≈⟨ sym $ #-resp-≈ (∘-resp-≈ˡ ([]-cong₂ identityʳ identityʳ))
(([ i₁ idC , i₂ idC ] f)#) ≈⟨ sym $ #-resp-≈ (∘-resp-≈ˡ []∘+₁)
((([ i₁ , i₂ ] (idC +₁ idC)) f)#) ≈⟨ #-resp-≈ assoc
(([ i₁ , i₂ ] (idC +₁ idC) f)#) ≈⟨ #-resp-≈ (∘-resp-≈ˡ +-η)
((idC (idC +₁ idC) f)#) ≈⟨ #-resp-≈ identityˡ
((idC +₁ idC) f) # }
; _∘_ = λ {EA} {EB} {EC} f g let ; _∘_ = λ {EA} {EB} {EC} f g let
open Elgot-Algebra-Morphism f renaming (h to hᶠ; preserves to preservesᶠ) open Elgot-Algebra-Morphism f renaming (h to hᶠ; preserves to preservesᶠ)
open Elgot-Algebra-Morphism g renaming (h to hᵍ; preserves to preservesᵍ) open Elgot-Algebra-Morphism g renaming (h to hᵍ; preserves to preservesᵍ)
@ -68,12 +62,9 @@ module _ (D : ExtensiveDistributiveCategory o e) where
open Elgot-Algebra EB using () renaming (_# to _#ᵇ; A to B) open Elgot-Algebra EB using () renaming (_# to _#ᵇ; A to B)
open Elgot-Algebra EC using () renaming (_# to _#ᶜ; A to C; #-resp-≈ to #ᶜ-resp-≈) open Elgot-Algebra EC using () renaming (_# to _#ᶜ; A to C; #-resp-≈ to #ᶜ-resp-≈)
in record { h = hᶠ hᵍ; preserves = λ {X} {f : X A + X} begin in record { h = hᶠ hᵍ; preserves = λ {X} {f : X A + X} begin
(hᶠ hᵍ) (f #ᵃ) ≈⟨ assoc (hᶠ hᵍ) (f #ᵃ) ≈⟨ pullʳ preservesᵍ
(hᶠ hᵍ (f #ᵃ)) ≈⟨ ∘-resp-≈ʳ preservesᵍ
(hᶠ (((hᵍ +₁ idC) f) #ᵇ)) ≈⟨ preservesᶠ (hᶠ (((hᵍ +₁ idC) f) #ᵇ)) ≈⟨ preservesᶠ
(((hᶠ +₁ idC) (hᵍ +₁ idC) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ sym-assoc (((hᶠ +₁ idC) (hᵍ +₁ idC) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (pullˡ (trans +₁∘+₁ (+₁-cong₂ refl (identity²))))
((((hᶠ +₁ idC) (hᵍ +₁ idC)) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)
((((hᶠ hᵍ) +₁ (idC idC)) f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ refl (identity²)))
((hᶠ hᵍ +₁ idC) f) #ᶜ } ((hᶠ hᵍ +₁ idC) f) #ᶜ }
; identityˡ = identityˡ ; identityˡ = identityˡ
; identityʳ = identityʳ ; identityʳ = identityʳ
@ -87,10 +78,7 @@ module _ (D : ExtensiveDistributiveCategory o e) where
} }
; ∘-resp-≈ = ∘-resp-≈ ; ∘-resp-≈ = ∘-resp-≈
} }
where where open Elgot-Algebra-Morphism
open Elgot-Algebra-Morphism
open HomReasoning
open Equiv
--* --*
-- products and exponentials of elgot-algebras -- products and exponentials of elgot-algebras
@ -114,7 +102,6 @@ module _ (D : ExtensiveDistributiveCategory o e) where
} }
where where
open Terminal T open Terminal T
open Equiv
-- if the carriers of the algebra form a product, so do the algebras -- if the carriers of the algebra form a product, so do the algebras
A×B-Helper : {EA EB : Elgot-Algebra D} Elgot-Algebra D A×B-Helper : {EA EB : Elgot-Algebra D} Elgot-Algebra D
@ -123,88 +110,66 @@ module _ (D : ExtensiveDistributiveCategory o e) where
; _# = λ {X : Obj} (h : X A×B + X) ((π₁ +₁ idC) h)#ᵃ , ((π₂ +₁ idC) h)#ᵇ ; _# = λ {X : Obj} (h : X A×B + X) ((π₁ +₁ idC) h)#ᵃ , ((π₂ +₁ idC) h)#ᵇ
; #-Fixpoint = λ {X} {f} begin ; #-Fixpoint = λ {X} {f} begin
((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ ⟨⟩-cong₂ #ᵃ-Fixpoint #ᵇ-Fixpoint
[ idC , ((π₁ +₁ idC) f)#ᵃ ] ((π₁ +₁ idC) f) , [ idC , ((π₂ +₁ idC) f)#ᵇ ] ((π₂ +₁ idC) f) ≈⟨ ⟨⟩-cong₂ sym-assoc sym-assoc [ idC , ((π₁ +₁ idC) f)#ᵃ ] ((π₁ +₁ idC) f) , [ idC , ((π₂ +₁ idC) f)#ᵇ ] ((π₂ +₁ idC) f) ≈⟨ ⟨⟩-cong₂ (pullˡ []∘+₁) (pullˡ []∘+₁)
([ idC , ((π₁ +₁ idC) f)#ᵃ ] (π₁ +₁ idC)) f , ([ idC , ((π₂ +₁ idC) f)#ᵇ ] (π₂ +₁ idC)) f ≈⟨ ⟨⟩-cong₂ (∘-resp-≈ˡ []∘+₁) (∘-resp-≈ˡ []∘+₁) [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] f , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f ≈˘⟨ ⟨⟩∘
[ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] f , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f ≈⟨ sym ⟨⟩∘ ( [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f) ≈⟨ ∘-resp-≈ˡ (unique
( [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] f) ≈⟨ ∘-resp-≈ˡ (unique (begin (begin
π₁ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₁ π₁ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₁
[ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] ≈⟨ []-cong₂ identityˡ identityʳ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₁))
[ π₁ , ((π₁ +₁ idC) f)#ᵃ ] ≈⟨ sym ([]-cong₂ identityʳ project₁) [ π₁ idC , π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈˘⟨ ∘[]
[ π₁ idC , π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ∘[] π₁ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] )
π₁ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ) (begin (begin
π₂ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₂ π₂ [ idC π₁ , ((π₁ +₁ idC) f)#ᵃ idC ] , [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ project₂
[ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ []-cong₂ identityˡ identityʳ [ idC π₂ , ((π₂ +₁ idC) f)#ᵇ idC ] ≈⟨ []-cong₂ id-comm-sym (trans identityʳ (sym project₂))
[ π₂ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ([]-cong₂ identityʳ project₂) [ π₂ idC , π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈˘⟨ ∘[]
[ π₂ idC , π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] ≈⟨ sym ∘[] π₂ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] )
π₂ [ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] )
) )
([ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] f) ([ idC , ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ] f)
; #-Uniformity = λ {X Y f g h} uni unique (begin ; #-Uniformity = λ {X Y f g h} uni unique
π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ project₁ (begin
(((π₁ +₁ idC) f)#ᵃ) ≈⟨ #ᵃ-Uniformity (begin π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ project₁
(idC +₁ h) (π₁ +₁ idC) f ≈⟨ sym-assoc (((π₁ +₁ idC) f)#ᵃ) ≈⟨ #ᵃ-Uniformity
((idC +₁ h) (π₁ +₁ idC)) f ≈⟨ ∘-resp-≈ˡ +₁∘+₁ (begin
(idC π₁ +₁ h idC) f ≈⟨ ∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ) -- TODO factor these out or adjust +₁ swap... maybe call it +₁-id-comm
((π₁ +₁ h) f) ≈⟨ sym (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ)) (idC +₁ h) (π₁ +₁ idC) f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))
(((π₁ idC +₁ idC h)) f) ≈⟨ sym (∘-resp-≈ˡ +₁∘+₁) (π₁ idC +₁ idC h) f ≈˘⟨ pullˡ +₁∘+₁
((π₁ +₁ idC) (idC +₁ h)) f ≈⟨ assoc (π₁ +₁ idC) (idC +₁ h) f ≈⟨ pushʳ uni
(π₁ +₁ idC) ((idC +₁ h) f) ≈⟨ ∘-resp-≈ʳ uni ((π₁ +₁ idC) g) h )
(π₁ +₁ idC) g h ≈⟨ sym-assoc (((π₁ +₁ idC) g)#ᵃ h) ≈˘⟨ pullˡ project₁
((π₁ +₁ idC) g) h π₁ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ h )
) (begin
(((π₁ +₁ idC) g)#ᵃ h) ≈⟨ sym (∘-resp-≈ˡ project₁) π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ project₂
((π₁ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ ) h) ≈⟨ assoc ((π₂ +₁ idC) f)#ᵇ ≈⟨ #ᵇ-Uniformity
π₁ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ h (begin
) (begin (idC +₁ h) (π₂ +₁ idC) f ≈⟨ pullˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))
π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ ≈⟨ project₂ ((π₂ idC +₁ idC h) f) ≈˘⟨ pullˡ +₁∘+₁
((π₂ +₁ idC) f)#ᵇ ≈⟨ #ᵇ-Uniformity (begin (π₂ +₁ idC) ((idC +₁ h)) f ≈⟨ pushʳ uni
(idC +₁ h) (π₂ +₁ idC) f ≈⟨ sym-assoc ((π₂ +₁ idC) g) h )
(((idC +₁ h) (π₂ +₁ idC)) f) ≈⟨ ∘-resp-≈ˡ +₁∘+₁ ((π₂ +₁ idC) g)#ᵇ h ≈˘⟨ pullˡ project₂
((idC π₂ +₁ h idC) f) ≈⟨ ∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ) π₂ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ h )
((π₂ +₁ h) f) ≈⟨ sym (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ))
((((π₂ idC +₁ idC h)) f)) ≈⟨ sym (∘-resp-≈ˡ +₁∘+₁)
((π₂ +₁ idC) ((idC +₁ h))) f ≈⟨ assoc
(π₂ +₁ idC) ((idC +₁ h)) f ≈⟨ ∘-resp-≈ʳ uni
(π₂ +₁ idC) g h ≈⟨ sym-assoc
((π₂ +₁ idC) g) h
)
((π₂ +₁ idC) g)#ᵇ h ≈⟨ sym (∘-resp-≈ˡ project₂)
((π₂ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ ) h) ≈⟨ assoc
π₂ ((π₁ +₁ idC) g)#ᵃ , ((π₂ +₁ idC) g)#ᵇ h
)
; #-Folding = λ {X} {Y} {f} {h} ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y}) ; #-Folding = λ {X} {Y} {f} {h} ⟨⟩-cong₂ (foldingˡ {X} {Y}) (foldingʳ {X} {Y})
; #-resp-≈ = λ fg ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg)) ; #-resp-≈ = λ fg ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ʳ fg)) (#ᵇ-resp-≈ (∘-resp-≈ʳ fg))
} }
where where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈) open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈) open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
open HomReasoning +₁-id-swap : {X Y C} {f : X (A × B) + X} {h : Y X + Y} (π : A × B C) [ (idC +₁ i₁) ((π +₁ idC) f) , i₂ h ] (π +₁ idC) [ (idC +₁ i₁) f , i₂ h ]
open Equiv +₁-id-swap {X} {Y} {C} {f} {h} π = begin ([ (idC +₁ i₁) ((π +₁ idC) f) , i₂ h ] ) ≈⟨ ([]-congʳ sym-assoc)
([ ((idC +₁ i₁) (π +₁ idC)) f , i₂ h ] ) ≈⟨ []-cong₂ (∘-resp-≈ˡ (trans +₁∘+₁ (+₁-cong₂ id-comm-sym id-comm))) (∘-resp-≈ˡ (sym identityʳ))
(([ (π idC +₁ idC i₁) f , (i₂ idC) h ])) ≈˘⟨ []-cong₂ (pullˡ +₁∘+₁) (pullˡ +₁∘i₂)
(([ (π +₁ idC) (idC +₁ i₁) f , (π +₁ idC) i₂ h ])) ≈˘⟨ ∘[]
((π +₁ idC) [ (idC +₁ i₁) f , i₂ h ])
foldingˡ : {X} {Y} {f} {h} (((π₁ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵃ) ((π₁ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵃ foldingˡ : {X} {Y} {f} {h} (((π₁ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵃ) ((π₁ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵃ
foldingˡ {X} {Y} {f} {h} = begin foldingˡ {X} {Y} {f} {h} = begin
((π₁ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵃ ≈⟨ #ᵃ-resp-≈ +₁∘+₁ ((π₁ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵃ ≈⟨ #ᵃ-resp-≈ (trans +₁∘+₁ (+₁-cong₂ project₁ identityˡ))
((π₁ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ idC h)#ᵃ) ≈⟨ #ᵃ-resp-≈ (+₁-cong₂ project₁ identityˡ)
((((π₁ +₁ idC) f)#ᵃ +₁ h)#ᵃ) ≈⟨ #ᵃ-Folding ((((π₁ +₁ idC) f)#ᵃ +₁ h)#ᵃ) ≈⟨ #ᵃ-Folding
([ (idC +₁ i₁) ((π₁ +₁ idC) f) , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-congʳ sym-assoc) ([ (idC +₁ i₁) ((π₁ +₁ idC) f) , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ (+₁-id-swap π₁)
([ ((idC +₁ i₁) (π₁ +₁ idC)) f , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-congʳ (∘-resp-≈ˡ +₁∘+₁))
([ ((idC π₁ +₁ i₁ idC)) f , i₂ h ] #ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-congʳ (∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)))
([ ((π₁ +₁ i₁)) f , i₂ h ] #ᵃ) ≈⟨ sym (#ᵃ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ)) (∘-resp-≈ˡ identityʳ)))
(([ (π₁ idC +₁ idC i₁) f , (i₂ idC) h ])#ᵃ) ≈⟨ sym (#ᵃ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ +₁∘i₂)))
(([ ((π₁ +₁ idC) (idC +₁ i₁)) f , ((π₁ +₁ idC) i₂) h ])#ᵃ) ≈⟨ #ᵃ-resp-≈ ([]-cong₂ assoc assoc)
(([ (π₁ +₁ idC) (idC +₁ i₁) f , (π₁ +₁ idC) i₂ h ])#ᵃ) ≈⟨ sym (#ᵃ-resp-≈ ∘[])
((π₁ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵃ ((π₁ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵃ
foldingʳ : {X} {Y} {f} {h} ((π₂ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵇ ((π₂ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵇ foldingʳ : {X} {Y} {f} {h} ((π₂ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵇ ((π₂ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵇ
foldingʳ {X} {Y} {f} {h} = begin foldingʳ {X} {Y} {f} {h} = begin
((π₂ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵇ ≈⟨ #ᵇ-resp-≈ +₁∘+₁ ((π₂ +₁ idC) ( ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ h))#ᵇ ≈⟨ #ᵇ-resp-≈ (trans +₁∘+₁ (+₁-cong₂ project₂ identityˡ))
((π₂ ((π₁ +₁ idC) f)#ᵃ , ((π₂ +₁ idC) f)#ᵇ +₁ idC h)#ᵇ) ≈⟨ #ᵇ-resp-≈ (+₁-cong₂ project₂ identityˡ)
((((π₂ +₁ idC) f)#ᵇ +₁ h)#ᵇ) ≈⟨ #ᵇ-Folding ((((π₂ +₁ idC) f)#ᵇ +₁ h)#ᵇ) ≈⟨ #ᵇ-Folding
[ (idC +₁ i₁) ((π₂ +₁ idC) f) , i₂ h ] #ᵇ ≈⟨ #ᵇ-resp-≈ ([]-congʳ sym-assoc) [ (idC +₁ i₁) ((π₂ +₁ idC) f) , i₂ h ] #ᵇ ≈⟨ #ᵇ-resp-≈ (+₁-id-swap π₂)
([ ((idC +₁ i₁) (π₂ +₁ idC)) f , i₂ h ] #ᵇ) ≈⟨ #ᵇ-resp-≈ ([]-congʳ (∘-resp-≈ˡ +₁∘+₁))
([ ((idC π₂ +₁ i₁ idC)) f , i₂ h ] #ᵇ) ≈⟨ #ᵇ-resp-≈ ([]-congʳ (∘-resp-≈ˡ (+₁-cong₂ identityˡ identityʳ)))
([ ((π₂ +₁ i₁)) f , i₂ h ] #ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ (+₁-cong₂ identityʳ identityˡ)) (∘-resp-≈ˡ identityʳ)))
(([ (π₂ idC +₁ idC i₁) f , (i₂ idC) h ])#ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ([]-cong₂ (∘-resp-≈ˡ +₁∘+₁) (∘-resp-≈ˡ +₁∘i₂)))
(([ ((π₂ +₁ idC) (idC +₁ i₁)) f , ((π₂ +₁ idC) i₂) h ])#ᵇ) ≈⟨ #ᵇ-resp-≈ ([]-cong₂ assoc assoc)
(([ (π₂ +₁ idC) (idC +₁ i₁) f , (π₂ +₁ idC) i₂ h ])#ᵇ) ≈⟨ sym (#ᵇ-resp-≈ ∘[])
((π₂ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵇ ((π₂ +₁ idC) [ (idC +₁ i₁) f , i₂ h ])#ᵇ
Product-Elgot-Algebras : (EA EB : Elgot-Algebra D) Product Elgot-Algebras EA EB Product-Elgot-Algebras : (EA EB : Elgot-Algebra D) Product Elgot-Algebras EA EB
@ -219,9 +184,8 @@ module _ (D : ExtensiveDistributiveCategory o e) where
begin begin
f , g (h #ᵉ) ≈⟨ ⟨⟩∘ f , g (h #ᵉ) ≈⟨ ⟨⟩∘
f (h #ᵉ) , g (h #ᵉ) ≈⟨ ⟨⟩-cong₂ preservesᶠ preservesᵍ f (h #ᵉ) , g (h #ᵉ) ≈⟨ ⟨⟩-cong₂ preservesᶠ preservesᵍ
((f +₁ idC) h) #ᵃ , ((g +₁ idC) h) #ᵇ ≈⟨ sym (⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₁ identity²))) (#ᵇ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₂ identity²)))) ((f +₁ idC) h) #ᵃ , ((g +₁ idC) h) #ᵇ ≈˘⟨ ⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₁ identity²))) (#ᵇ-resp-≈ (∘-resp-≈ˡ (+₁-cong₂ project₂ identity²)))
((π₁ f , g +₁ idC idC) h) #ᵃ , ((π₂ f , g +₁ idC idC) h) #ᵇ ≈⟨ sym (⟨⟩-cong₂ (#ᵃ-resp-≈ (∘-resp-≈ˡ +₁∘+₁)) (#ᵇ-resp-≈ (∘-resp-≈ˡ +₁∘+₁))) ((π₁ f , g +₁ idC idC) h) #ᵃ , ((π₂ f , g +₁ idC idC) h) #ᵇ ≈˘⟨ ⟨⟩-cong₂ (#ᵃ-resp-≈ (pullˡ +₁∘+₁)) (#ᵇ-resp-≈ (pullˡ +₁∘+₁))
(((π₁ +₁ idC) ( f , g +₁ idC)) h) #ᵃ , (((π₂ +₁ idC) ( f , g +₁ idC)) h) #ᵇ ≈⟨ (⟨⟩-cong₂ (#ᵃ-resp-≈ assoc) (#ᵇ-resp-≈ assoc))
((π₁ +₁ idC) ( f , g +₁ idC) h) #ᵃ , ((π₂ +₁ idC) ( f , g +₁ idC) h) #ᵇ } ((π₁ +₁ idC) ( f , g +₁ idC) h) #ᵃ , ((π₂ +₁ idC) ( f , g +₁ idC) h) #ᵇ }
; project₁ = project₁ ; project₁ = project₁
; project₂ = project₂ ; project₂ = project₂
@ -231,8 +195,6 @@ module _ (D : ExtensiveDistributiveCategory o e) where
open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈) open Elgot-Algebra EA using (A) renaming (_# to _#ᵃ; #-Fixpoint to #ᵃ-Fixpoint; #-Uniformity to #ᵃ-Uniformity; #-Folding to #ᵃ-Folding; #-resp-≈ to #ᵃ-resp-≈)
open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈) open Elgot-Algebra EB using () renaming (A to B; _# to _#ᵇ; #-Fixpoint to #ᵇ-Fixpoint; #-Uniformity to #ᵇ-Uniformity; #-Folding to #ᵇ-Folding; #-resp-≈ to #ᵇ-resp-≈)
open Elgot-Algebra (A×B-Helper {EA} {EB}) using () renaming (_# to _#ᵖ) open Elgot-Algebra (A×B-Helper {EA} {EB}) using () renaming (_# to _#ᵖ)
open HomReasoning
open Equiv
-- if the carrier is cartesian, so is the category of algebras -- if the carrier is cartesian, so is the category of algebras
@ -241,8 +203,6 @@ module _ (D : ExtensiveDistributiveCategory o e) where
{ terminal = Terminal-Elgot-Algebras terminal { terminal = Terminal-Elgot-Algebras terminal
; products = record { product = λ {EA EB} Product-Elgot-Algebras EA EB } ; products = record { product = λ {EA EB} Product-Elgot-Algebras EA EB }
} }
where
open Equiv
-- if the carriers of the algebra form a exponential, so do the algebras -- if the carriers of the algebra form a exponential, so do the algebras
B^A-Helper : {EA : Elgot-Algebra D} {X : Obj} Exponential C X (Elgot-Algebra.A EA) Elgot-Algebra D B^A-Helper : {EA : Elgot-Algebra D} {X : Obj} Exponential C X (Elgot-Algebra.A EA) Elgot-Algebra D

View file

@ -5,8 +5,29 @@ Here I am formalizing some notions of this paper [https://arxiv.org/pdf/2102.118
## Running the project ## Running the project
TODO TODO
## Contributions to *agda-categories*
This project uses the awesome category theory library for agda ([agda-categories](https://github.com/agda/agda-categories)), it is already very extensive, but some notions needed here are missing, so I contribute them to the library.
So far the contributions are:
1. Kleisli triples [[merged](https://github.com/agda/agda-categories/pull/381)]
- `Categories.Monad.Construction.Kleisli`
2. Distributive categories (and the relation to extensivity) [[**WIP**](https://github.com/agda/agda-categories/pull/383)]
- `Categories.Category.Distributive`
- `Categories.Category.Extensive.Bundle`
- `Categories.Category.Extensive.Properties.Distributive`
## Goals ## Goals
TODO - [X] `ElgotAlgebra.agda`
- [X] Formalize (un-)guarded elgot-algebra.
- [X] Show the equivalence of `#-Folding` and `#-Compositionality` in the unguarded case. (*Proposition 10*)
- [ ] `ElgotAlgebras.agda`
- [X] Formalize the category of elgot algebras for a given carrier.
- [X] Show existence of products in this category
- [ ] Show existence of exponentials (if carrier has exponentials)
- [ ] Theorem 37 (final goal)
## Roadmap ## Roadmap
TODO TODO
## TODOs
- [ ] Create Roadmap (find what theorem 37 depends on and then create a game plan)
- [ ] Refactor `ElgotAlgebras.agda` using `Categories.Morphism.Reasoning` (nicer proofs)