mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Add category of strong pre elgot monads
This commit is contained in:
parent
d762e280ad
commit
d3712d4abd
2 changed files with 198 additions and 66 deletions
|
@ -47,72 +47,72 @@ module _ (P S : PreElgotMonad) where
|
|||
|
||||
PreElgotMonads : Category (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) (o ⊔ e)
|
||||
PreElgotMonads = record
|
||||
{ Obj = PreElgotMonad
|
||||
; _⇒_ = PreElgotMonad-Morphism
|
||||
; _≈_ = λ f g → (PreElgotMonad-Morphism.α f) ≃ (PreElgotMonad-Morphism.α g)
|
||||
; id = id'
|
||||
; _∘_ = _∘'_
|
||||
; assoc = assoc
|
||||
; sym-assoc = sym-assoc
|
||||
; identityˡ = identityˡ
|
||||
; identityʳ = identityʳ
|
||||
; identity² = identity²
|
||||
; equiv = λ {A} {B} → record { refl = refl ; sym = λ f → sym f ; trans = λ f g → trans f g }
|
||||
; ∘-resp-≈ = λ f≈h g≈i → ∘-resp-≈ f≈h g≈i
|
||||
}
|
||||
where
|
||||
open Elgot-Algebra-on using (#-resp-≈)
|
||||
id' : ∀ {A : PreElgotMonad} → PreElgotMonad-Morphism A A
|
||||
id' {A} = record
|
||||
{ α = ntHelper (record
|
||||
{ η = λ _ → idC
|
||||
; commute = λ _ → id-comm-sym
|
||||
})
|
||||
; α-η = identityˡ
|
||||
; α-μ = sym (begin
|
||||
T.μ.η _ ∘ T.F.₁ idC ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
|
||||
T.μ.η _ ∘ T.F.₁ idC ≈⟨ elimʳ T.F.identity ⟩
|
||||
T.μ.η _ ≈⟨ sym identityˡ ⟩
|
||||
idC ∘ T.μ.η _ ∎)
|
||||
; preserves = λ f → begin
|
||||
idC ∘ f # ≈⟨ identityˡ ⟩
|
||||
f # ≈⟨ sym (#-resp-≈ elgotalgebras (elimˡ ([]-unique id-comm-sym id-comm-sym))) ⟩
|
||||
((idC +₁ idC) ∘ f) # ∎
|
||||
}
|
||||
where
|
||||
open PreElgotMonad A using (T; elgotalgebras)
|
||||
module T = Monad T
|
||||
_# = λ {X} {A} f → elgotalgebras._# {X} {A} f
|
||||
_∘'_ : ∀ {X Y Z : PreElgotMonad} → PreElgotMonad-Morphism Y Z → PreElgotMonad-Morphism X Y → PreElgotMonad-Morphism X Z
|
||||
_∘'_ {X} {Y} {Z} f g = record
|
||||
{ α = αf ∘ᵥ αg
|
||||
; α-η = λ {A} → begin
|
||||
(αf.η A ∘ αg.η A) ∘ TX.η.η A ≈⟨ pullʳ (α-η g) ⟩
|
||||
αf.η A ∘ TY.η.η A ≈⟨ α-η f ⟩
|
||||
TZ.η.η A ∎
|
||||
; α-μ = λ {A} → begin
|
||||
(αf.η A ∘ αg.η A) ∘ TX.μ.η A ≈⟨ pullʳ (α-μ g) ⟩
|
||||
αf.η A ∘ TY.μ.η A ∘ TY.F.₁ (αg.η A) ∘ αg.η (TX.F.₀ A) ≈⟨ pullˡ (α-μ f) ⟩
|
||||
(TZ.μ.η A ∘ TZ.F.₁ (αf.η A) ∘ αf.η (TY.F.₀ A)) ∘ TY.F.₁ (αg.η A) ∘ αg.η (TX.F.₀ A) ≈⟨ assoc ○ refl⟩∘⟨ pullʳ (pullˡ (NaturalTransformation.commute αf (αg.η A))) ⟩
|
||||
TZ.μ.η A ∘ TZ.F.₁ (αf.η A) ∘ (TZ.F.₁ (αg.η A) ∘ αf.η (TX.F.₀ A)) ∘ αg.η (TX.F.₀ A) ≈⟨ refl⟩∘⟨ pullˡ (pullˡ (sym (Functor.homomorphism TZ.F))) ⟩
|
||||
TZ.μ.η A ∘ (TZ.F.₁ (αf.η A ∘ αg.η A) ∘ αf.η (TX.F.₀ A)) ∘ αg.η (TX.F.₀ A) ≈⟨ refl⟩∘⟨ assoc ⟩
|
||||
TZ.μ.η A ∘ TZ.F.₁ ((αf.η A ∘ αg.η A)) ∘ αf.η (TX.F.₀ A) ∘ αg.η (TX.F.₀ A) ∎
|
||||
; preserves = λ {A} {B} h → begin
|
||||
(αf.η B ∘ αg.η B) ∘ (h #X) ≈⟨ pullʳ (preserves g h) ⟩
|
||||
αf.η B ∘ ((αg.η B +₁ idC) ∘ h) #Y ≈⟨ preserves f ((αg.η B +₁ idC) ∘ h) ⟩
|
||||
(((αf.η B +₁ idC) ∘ (αg.η B +₁ idC) ∘ h) #Z) ≈⟨ #-resp-≈ (PreElgotMonad.elgotalgebras Z) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
||||
(((αf.η B ∘ αg.η B +₁ idC) ∘ h) #Z) ∎
|
||||
}
|
||||
where
|
||||
module TX = Monad (PreElgotMonad.T X)
|
||||
module TY = Monad (PreElgotMonad.T Y)
|
||||
module TZ = Monad (PreElgotMonad.T Z)
|
||||
_#X = λ {A} {B} f → PreElgotMonad.elgotalgebras._# X {A} {B} f
|
||||
_#Y = λ {A} {B} f → PreElgotMonad.elgotalgebras._# Y {A} {B} f
|
||||
_#Z = λ {A} {B} f → PreElgotMonad.elgotalgebras._# Z {A} {B} f
|
||||
{ Obj = PreElgotMonad
|
||||
; _⇒_ = PreElgotMonad-Morphism
|
||||
; _≈_ = λ f g → (PreElgotMonad-Morphism.α f) ≃ (PreElgotMonad-Morphism.α g)
|
||||
; id = id'
|
||||
; _∘_ = _∘'_
|
||||
; assoc = assoc
|
||||
; sym-assoc = sym-assoc
|
||||
; identityˡ = identityˡ
|
||||
; identityʳ = identityʳ
|
||||
; identity² = identity²
|
||||
; equiv = record { refl = refl ; sym = λ f → sym f ; trans = λ f g → trans f g }
|
||||
; ∘-resp-≈ = λ f≈h g≈i → ∘-resp-≈ f≈h g≈i
|
||||
}
|
||||
where
|
||||
open Elgot-Algebra-on using (#-resp-≈)
|
||||
id' : ∀ {A : PreElgotMonad} → PreElgotMonad-Morphism A A
|
||||
id' {A} = record
|
||||
{ α = ntHelper (record
|
||||
{ η = λ _ → idC
|
||||
; commute = λ _ → id-comm-sym
|
||||
})
|
||||
; α-η = identityˡ
|
||||
; α-μ = sym (begin
|
||||
T.μ.η _ ∘ T.F.₁ idC ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
|
||||
T.μ.η _ ∘ T.F.₁ idC ≈⟨ elimʳ T.F.identity ⟩
|
||||
T.μ.η _ ≈⟨ sym identityˡ ⟩
|
||||
idC ∘ T.μ.η _ ∎)
|
||||
; preserves = λ f → begin
|
||||
idC ∘ f # ≈⟨ identityˡ ⟩
|
||||
f # ≈⟨ sym (#-resp-≈ elgotalgebras (elimˡ ([]-unique id-comm-sym id-comm-sym))) ⟩
|
||||
((idC +₁ idC) ∘ f) # ∎
|
||||
}
|
||||
where
|
||||
open PreElgotMonad A using (T; elgotalgebras)
|
||||
module T = Monad T
|
||||
_# = λ {X} {A} f → elgotalgebras._# {X} {A} f
|
||||
_∘'_ : ∀ {X Y Z : PreElgotMonad} → PreElgotMonad-Morphism Y Z → PreElgotMonad-Morphism X Y → PreElgotMonad-Morphism X Z
|
||||
_∘'_ {X} {Y} {Z} f g = record
|
||||
{ α = αf ∘ᵥ αg
|
||||
; α-η = λ {A} → begin
|
||||
(αf.η A ∘ αg.η A) ∘ TX.η.η A ≈⟨ pullʳ (α-η g) ⟩
|
||||
αf.η A ∘ TY.η.η A ≈⟨ α-η f ⟩
|
||||
TZ.η.η A ∎
|
||||
; α-μ = λ {A} → begin
|
||||
(αf.η A ∘ αg.η A) ∘ TX.μ.η A ≈⟨ pullʳ (α-μ g) ⟩
|
||||
αf.η A ∘ TY.μ.η A ∘ TY.F.₁ (αg.η A) ∘ αg.η (TX.F.₀ A) ≈⟨ pullˡ (α-μ f) ⟩
|
||||
(TZ.μ.η A ∘ TZ.F.₁ (αf.η A) ∘ αf.η (TY.F.₀ A)) ∘ TY.F.₁ (αg.η A) ∘ αg.η (TX.F.₀ A) ≈⟨ assoc ○ refl⟩∘⟨ pullʳ (pullˡ (NaturalTransformation.commute αf (αg.η A))) ⟩
|
||||
TZ.μ.η A ∘ TZ.F.₁ (αf.η A) ∘ (TZ.F.₁ (αg.η A) ∘ αf.η (TX.F.₀ A)) ∘ αg.η (TX.F.₀ A) ≈⟨ refl⟩∘⟨ pullˡ (pullˡ (sym (Functor.homomorphism TZ.F))) ⟩
|
||||
TZ.μ.η A ∘ (TZ.F.₁ (αf.η A ∘ αg.η A) ∘ αf.η (TX.F.₀ A)) ∘ αg.η (TX.F.₀ A) ≈⟨ refl⟩∘⟨ assoc ⟩
|
||||
TZ.μ.η A ∘ TZ.F.₁ ((αf.η A ∘ αg.η A)) ∘ αf.η (TX.F.₀ A) ∘ αg.η (TX.F.₀ A) ∎
|
||||
; preserves = λ {A} {B} h → begin
|
||||
(αf.η B ∘ αg.η B) ∘ (h #X) ≈⟨ pullʳ (preserves g h) ⟩
|
||||
αf.η B ∘ ((αg.η B +₁ idC) ∘ h) #Y ≈⟨ preserves f ((αg.η B +₁ idC) ∘ h) ⟩
|
||||
(((αf.η B +₁ idC) ∘ (αg.η B +₁ idC) ∘ h) #Z) ≈⟨ #-resp-≈ (PreElgotMonad.elgotalgebras Z) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
||||
(((αf.η B ∘ αg.η B +₁ idC) ∘ h) #Z) ∎
|
||||
}
|
||||
where
|
||||
module TX = Monad (PreElgotMonad.T X)
|
||||
module TY = Monad (PreElgotMonad.T Y)
|
||||
module TZ = Monad (PreElgotMonad.T Z)
|
||||
_#X = λ {A} {B} f → PreElgotMonad.elgotalgebras._# X {A} {B} f
|
||||
_#Y = λ {A} {B} f → PreElgotMonad.elgotalgebras._# Y {A} {B} f
|
||||
_#Z = λ {A} {B} f → PreElgotMonad.elgotalgebras._# Z {A} {B} f
|
||||
|
||||
open PreElgotMonad-Morphism using (α-η; α-μ; preserves)
|
||||
open PreElgotMonad-Morphism using (α-η; α-μ; preserves)
|
||||
|
||||
open PreElgotMonad-Morphism f using () renaming (α to αf)
|
||||
open PreElgotMonad-Morphism g using () renaming (α to αg)
|
||||
open PreElgotMonad-Morphism f using () renaming (α to αf)
|
||||
open PreElgotMonad-Morphism g using () renaming (α to αg)
|
||||
```
|
||||
|
|
132
src/Category/Construction/StrongPreElgotMonads.lagda.md
Normal file
132
src/Category/Construction/StrongPreElgotMonads.lagda.md
Normal file
|
@ -0,0 +1,132 @@
|
|||
<!--
|
||||
```agda
|
||||
open import Level
|
||||
open import Category.Instance.AmbientCategory
|
||||
open import Categories.NaturalTransformation
|
||||
open import Categories.NaturalTransformation.Equivalence
|
||||
open import Categories.Monad
|
||||
open import Categories.Monad.Relative renaming (Monad to RMonad)
|
||||
open import Categories.Functor
|
||||
open import Categories.Monad.Construction.Kleisli
|
||||
open import Categories.Monad.Strong
|
||||
open import Categories.Category.Core
|
||||
open import Data.Product using (_,_)
|
||||
```
|
||||
-->
|
||||
|
||||
# The (functor) category of pre-Elgot monads.
|
||||
|
||||
```agda
|
||||
module Category.Construction.StrongPreElgotMonads {o ℓ e} (ambient : Ambient o ℓ e) where
|
||||
open Ambient ambient
|
||||
open import Monad.PreElgot ambient
|
||||
open import Algebra.ElgotAlgebra ambient
|
||||
open HomReasoning
|
||||
open Equiv
|
||||
open M C
|
||||
open MR C
|
||||
|
||||
module _ (P S : StrongPreElgotMonad) where
|
||||
private
|
||||
open StrongPreElgotMonad P using () renaming (SM to SMP; elgotalgebras to P-elgots)
|
||||
open StrongPreElgotMonad S using () renaming (SM to SMS; elgotalgebras to S-elgots)
|
||||
open StrongMonad SMP using () renaming (M to TP; strengthen to strengthenP)
|
||||
open StrongMonad SMS using () renaming (M to TS; strengthen to strengthenS)
|
||||
open RMonad (Monad⇒Kleisli C TP) using () renaming (extend to extendP)
|
||||
open RMonad (Monad⇒Kleisli C TS) using () renaming (extend to extendS)
|
||||
_#P = λ {X} {A} f → P-elgots._# {X} {A} f
|
||||
_#S = λ {X} {A} f → S-elgots._# {X} {A} f
|
||||
record StrongPreElgotMonad-Morphism : Set (o ⊔ ℓ ⊔ e) where
|
||||
field
|
||||
α : NaturalTransformation TP.F TS.F
|
||||
module α = NaturalTransformation α
|
||||
field
|
||||
α-η : ∀ {X}
|
||||
→ α.η X ∘ TP.η.η X ≈ TS.η.η X
|
||||
α-μ : ∀ {X}
|
||||
→ α.η X ∘ TP.μ.η X ≈ TS.μ.η X ∘ TS.F.₁ (α.η X) ∘ α.η (TP.F.₀ X)
|
||||
α-strength : ∀ {X Y}
|
||||
→ α.η (X × Y) ∘ strengthenP.η (X , Y) ≈ strengthenS.η (X , Y) ∘ (idC ⁂ α.η Y)
|
||||
α-preserves : ∀ {X A} (f : X ⇒ TP.F.₀ A + X) → α.η A ∘ f #P ≈ ((α.η A +₁ idC) ∘ f) #S
|
||||
|
||||
StrongPreElgotMonads : Category (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) (o ⊔ e)
|
||||
StrongPreElgotMonads = record
|
||||
{ Obj = StrongPreElgotMonad
|
||||
; _⇒_ = StrongPreElgotMonad-Morphism
|
||||
; _≈_ = λ f g → (StrongPreElgotMonad-Morphism.α f) ≃ (StrongPreElgotMonad-Morphism.α g)
|
||||
; id = id'
|
||||
; _∘_ = _∘'_
|
||||
; assoc = assoc
|
||||
; sym-assoc = sym-assoc
|
||||
; identityˡ = identityˡ
|
||||
; identityʳ = identityʳ
|
||||
; identity² = identity²
|
||||
; equiv = record { refl = refl ; sym = λ f → sym f ; trans = λ f g → trans f g }
|
||||
; ∘-resp-≈ = λ f≈h g≈i → ∘-resp-≈ f≈h g≈i
|
||||
}
|
||||
where
|
||||
open Elgot-Algebra-on using (#-resp-≈)
|
||||
id' : ∀ {A : StrongPreElgotMonad} → StrongPreElgotMonad-Morphism A A
|
||||
id' {A} = record
|
||||
{ α = ntHelper (record { η = λ _ → idC ; commute = λ _ → id-comm-sym })
|
||||
; α-η = identityˡ
|
||||
; α-μ = sym (begin
|
||||
M.μ.η _ ∘ M.F.₁ idC ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
|
||||
M.μ.η _ ∘ M.F.₁ idC ≈⟨ elimʳ M.F.identity ⟩
|
||||
M.μ.η _ ≈⟨ sym identityˡ ⟩
|
||||
idC ∘ M.μ.η _ ∎)
|
||||
; α-strength = λ {X} {Y} → sym (begin
|
||||
strengthen.η (X , Y) ∘ (idC ⁂ idC) ≈⟨ refl⟩∘⟨ (⁂-cong₂ refl (sym M.F.identity)) ⟩
|
||||
strengthen.η (X , Y) ∘ (idC ⁂ M.F.₁ idC) ≈⟨ strengthen.commute (idC , idC) ⟩
|
||||
M.F.₁ (idC ⁂ idC) ∘ strengthen.η (X , Y) ≈⟨ (M.F.F-resp-≈ (⟨⟩-unique id-comm id-comm) ○ M.F.identity) ⟩∘⟨refl ⟩
|
||||
idC ∘ strengthen.η (X , Y) ∎)
|
||||
; α-preserves = λ f → begin
|
||||
idC ∘ f # ≈⟨ identityˡ ⟩
|
||||
f # ≈⟨ sym (#-resp-≈ elgotalgebras (elimˡ ([]-unique id-comm-sym id-comm-sym))) ⟩
|
||||
((idC +₁ idC) ∘ f) # ∎
|
||||
}
|
||||
where
|
||||
open StrongPreElgotMonad A using (SM; elgotalgebras)
|
||||
open StrongMonad SM using (M; strengthen)
|
||||
_# = λ {X} {A} f → elgotalgebras._# {X} {A} f
|
||||
_∘'_ : ∀ {X Y Z : StrongPreElgotMonad} → StrongPreElgotMonad-Morphism Y Z → StrongPreElgotMonad-Morphism X Y → StrongPreElgotMonad-Morphism X Z
|
||||
_∘'_ {X} {Y} {Z} f g = record
|
||||
{ α = αf ∘ᵥ αg
|
||||
; α-η = λ {A} → begin
|
||||
(αf.η A ∘ αg.η A) ∘ MX.η.η A ≈⟨ pullʳ (α-η g) ⟩
|
||||
αf.η A ∘ MY.η.η A ≈⟨ α-η f ⟩
|
||||
MZ.η.η A ∎
|
||||
; α-μ = λ {A} → begin
|
||||
(αf.η A ∘ αg.η A) ∘ MX.μ.η A ≈⟨ pullʳ (α-μ g) ⟩
|
||||
αf.η A ∘ MY.μ.η A ∘ MY.F.₁ (αg.η A) ∘ αg.η (MX.F.₀ A) ≈⟨ pullˡ (α-μ f) ⟩
|
||||
(MZ.μ.η A ∘ MZ.F.₁ (αf.η A) ∘ αf.η (MY.F.₀ A)) ∘ MY.F.₁ (αg.η A) ∘ αg.η (MX.F.₀ A) ≈⟨ assoc ○ refl⟩∘⟨ pullʳ (pullˡ (NaturalTransformation.commute αf (αg.η A))) ⟩
|
||||
MZ.μ.η A ∘ MZ.F.₁ (αf.η A) ∘ (MZ.F.₁ (αg.η A) ∘ αf.η (MX.F.₀ A)) ∘ αg.η (MX.F.₀ A) ≈⟨ refl⟩∘⟨ pullˡ (pullˡ (sym (Functor.homomorphism MZ.F))) ⟩
|
||||
MZ.μ.η A ∘ (MZ.F.₁ (αf.η A ∘ αg.η A) ∘ αf.η (MX.F.₀ A)) ∘ αg.η (MX.F.₀ A) ≈⟨ refl⟩∘⟨ assoc ⟩
|
||||
MZ.μ.η A ∘ MZ.F.₁ ((αf.η A ∘ αg.η A)) ∘ αf.η (MX.F.₀ A) ∘ αg.η (MX.F.₀ A) ∎
|
||||
; α-strength = λ {A} {B} → begin
|
||||
(αf.η (A × B) ∘ αg.η (A × B)) ∘ strengthenX.η (A , B) ≈⟨ pullʳ (α-strength g) ⟩
|
||||
αf.η (A × B) ∘ strengthenY.η (A , B) ∘ (idC ⁂ αg.η B) ≈⟨ pullˡ (α-strength f) ⟩
|
||||
(strengthenZ.η (A , B) ∘ (idC ⁂ αf.η B)) ∘ (idC ⁂ αg.η B) ≈⟨ pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² refl) ⟩
|
||||
strengthenZ.η (A , B) ∘ (idC ⁂ (αf.η B ∘ αg.η B)) ∎
|
||||
; α-preserves = λ {A} {B} h → begin
|
||||
(αf.η B ∘ αg.η B) ∘ (h #X) ≈⟨ pullʳ (α-preserves g h) ⟩
|
||||
αf.η B ∘ ((αg.η B +₁ idC) ∘ h) #Y ≈⟨ α-preserves f ((αg.η B +₁ idC) ∘ h) ⟩
|
||||
(((αf.η B +₁ idC) ∘ (αg.η B +₁ idC) ∘ h) #Z) ≈⟨ #-resp-≈ (StrongPreElgotMonad.elgotalgebras Z) (pullˡ (+₁∘+₁ ○ +₁-cong₂ refl identity²)) ⟩
|
||||
(((αf.η B ∘ αg.η B +₁ idC) ∘ h) #Z) ∎
|
||||
}
|
||||
where
|
||||
open StrongPreElgotMonad X using () renaming (SM to SMX)
|
||||
open StrongPreElgotMonad Y using () renaming (SM to SMY)
|
||||
open StrongPreElgotMonad Z using () renaming (SM to SMZ)
|
||||
open StrongMonad SMX using () renaming (M to MX; strengthen to strengthenX)
|
||||
open StrongMonad SMY using () renaming (M to MY; strengthen to strengthenY)
|
||||
open StrongMonad SMZ using () renaming (M to MZ; strengthen to strengthenZ)
|
||||
_#X = λ {A} {B} f → StrongPreElgotMonad.elgotalgebras._# X {A} {B} f
|
||||
_#Y = λ {A} {B} f → StrongPreElgotMonad.elgotalgebras._# Y {A} {B} f
|
||||
_#Z = λ {A} {B} f → StrongPreElgotMonad.elgotalgebras._# Z {A} {B} f
|
||||
|
||||
open StrongPreElgotMonad-Morphism using (α-η; α-μ; α-strength; α-preserves)
|
||||
|
||||
open StrongPreElgotMonad-Morphism f using () renaming (α to αf)
|
||||
open StrongPreElgotMonad-Morphism g using () renaming (α to αg)
|
||||
```
|
Loading…
Reference in a new issue