mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Compare commits
4 commits
202d130d33
...
09fc7f8fa9
Author | SHA1 | Date | |
---|---|---|---|
09fc7f8fa9 | |||
93db0cb6dc | |||
4d8bb098af | |||
7f3330f45c |
11 changed files with 170 additions and 122 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -51,3 +51,4 @@ slides/*.pdf
|
|||
_region_.tex
|
||||
*.xdv
|
||||
thesis/_minted-main/
|
||||
slides/_minted-main/
|
||||
|
|
16
.gitlab-ci.yml
Normal file
16
.gitlab-ci.yml
Normal file
|
@ -0,0 +1,16 @@
|
|||
variables:
|
||||
LATEX_IMAGE: danteev/texlive
|
||||
|
||||
build:
|
||||
image: $LATEX_IMAGE
|
||||
script:
|
||||
- cd thesis
|
||||
- latexmk -pdf -xelatex -shell-escape main.tex
|
||||
- cd ../slides
|
||||
- latexmk -pdf -xelatex -shell-escape main.tex
|
||||
|
||||
artifacts:
|
||||
paths:
|
||||
- "thesis/*.pdf"
|
||||
- "slides/*.pdf"
|
||||
|
2
slides/.vscode/settings.json
vendored
2
slides/.vscode/settings.json
vendored
|
@ -7,7 +7,9 @@
|
|||
"-synctex=1",
|
||||
"-interaction=nonstopmode",
|
||||
"-file-line-error",
|
||||
"-shell-escape",
|
||||
"-pdf",
|
||||
"-xelatex",
|
||||
"-outdir=%OUTDIR%",
|
||||
"main.tex"
|
||||
],
|
||||
|
|
|
@ -3,10 +3,12 @@ hd [] = error "empty list"
|
|||
hd (x : _) = x
|
||||
|
||||
main :: IO ()
|
||||
main = print (hd []::[String])
|
||||
main = do
|
||||
print (Main.reverse ([1,2,3]::[Int]))
|
||||
print (hd []::[String])
|
||||
|
||||
reverse :: [a] -> [a]
|
||||
reverse l = rev l []
|
||||
reverse l = reverseAcc l []
|
||||
where
|
||||
rev [] a = a
|
||||
rev (x:xs) a = rev xs (x:a)
|
||||
reverseAcc [] a = a
|
||||
reverseAcc (x:xs) a = reverseAcc xs (x:a)
|
||||
|
|
|
@ -13,16 +13,12 @@ module reverse where
|
|||
now : A → Delay A
|
||||
later : ∞ (Delay A) → Delay A
|
||||
|
||||
foldl : ∀ {A B : Set} → (A → B → A) → A → Colist B → Delay A
|
||||
foldl c n [] = now n
|
||||
foldl c n (x ∷ xs) = later (♯ foldl c (c n x) (♭ xs))
|
||||
|
||||
-- reversing possibly infinite lists
|
||||
reverse : ∀ {A : Set} → Colist A → Delay (Colist A)
|
||||
reverse {A} = reverseAcc []
|
||||
where
|
||||
reverseAcc : Colist A → Colist A → Delay (Colist A)
|
||||
reverseAcc = foldl (λ xs x → x ∷ (♯ xs)) -- 'flip _∷_' with extra steps
|
||||
reverseAcc [] a = now a
|
||||
reverseAcc (x ∷ xs) a = later (♯ reverseAcc (♭ xs) (x ∷ (♯ a)))
|
||||
|
||||
run_for_steps : ∀ {A : Set} → Delay A → ℕ → Delay A
|
||||
run now x for n steps = now x
|
||||
|
|
|
@ -24,8 +24,8 @@
|
|||
]{styles/beamerthemefau}
|
||||
% ----------------------------------------------------------------------------------------
|
||||
% Input and output encoding
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage[utf8]{inputenc}
|
||||
% \usepackage[T1]{fontenc}
|
||||
% \usepackage[utf8]{inputenc}
|
||||
% ----------------------------------------------------------------------------------------
|
||||
% Language settings
|
||||
\usepackage[english]{babel}
|
||||
|
@ -36,6 +36,7 @@
|
|||
% - We use serif for math environements
|
||||
% - isomath is used for upGreek letters
|
||||
% ----------------------------------------------------------------------------------------
|
||||
\usepackage{fvextra}
|
||||
\usepackage{isomath}
|
||||
\usefonttheme[onlymath]{serif}
|
||||
\usepackage{exscale}
|
||||
|
@ -49,7 +50,7 @@
|
|||
% ========================================================================================
|
||||
% Setup for Titlepage
|
||||
% ----------------------------------------------------------------------------------------
|
||||
\title{Implementing Notions of Partiality and Delay\\ in Agda}
|
||||
\title{Implementing Categorical Notions of Partiality and Delay in Agda}
|
||||
\subtitle{Subtitle}
|
||||
\author[L. Vatthauer]{
|
||||
Leon Vatthauer%\inst{1}
|
||||
|
@ -138,71 +139,20 @@ Leon Vatthauer%\inst{1}
|
|||
% The main document
|
||||
% ------------------------------------------------
|
||||
\usepackage{MnSymbol} % for \squaredots
|
||||
\usepackage{listings}
|
||||
\lstset{mathescape}
|
||||
|
||||
\usepackage{xcolor}
|
||||
|
||||
\definecolor{codegray}{rgb}{0.5,0.5,0.5}
|
||||
\definecolor{string}{HTML}{79731B}
|
||||
\definecolor{keyword}{HTML}{447A59}
|
||||
\definecolor{background}{HTML}{E6E6E6}
|
||||
\definecolor{error}{HTML}{9B0511}
|
||||
\definecolor{agda-name}{HTML}{3b31f9}
|
||||
\definecolor{agda-keyword}{HTML}{fc970a}
|
||||
\definecolor{agda-constructor}{HTML}{08aa20}
|
||||
|
||||
|
||||
\lstdefinestyle{mystyle}{
|
||||
backgroundcolor=\color{background},
|
||||
% commentstyle=\color{codegreen},
|
||||
% keywordstyle=\color{keyword},
|
||||
numberstyle=\tiny\color{codegray},
|
||||
stringstyle=\color{string},
|
||||
basicstyle=\ttfamily\small,
|
||||
breakatwhitespace=false,
|
||||
breaklines=true,
|
||||
captionpos=b,
|
||||
keepspaces=true,
|
||||
numbers=left,
|
||||
numbersep=5pt,
|
||||
showspaces=false,
|
||||
showstringspaces=false,
|
||||
showtabs=false,
|
||||
tabsize=2
|
||||
}
|
||||
\lstdefinelanguage{myhaskell}{
|
||||
keywords=[1]{
|
||||
where
|
||||
},
|
||||
keywordstyle=[1]\color{agda-keyword},
|
||||
keywords=[2]{
|
||||
error
|
||||
},
|
||||
keywordstyle=[2]\color{error},
|
||||
keywords=[3]{
|
||||
head, reverse, rev
|
||||
},
|
||||
keywordstyle=[3]\color{agda-name},
|
||||
morestring=[b]"
|
||||
\usepackage{minted}
|
||||
\setminted[agda]{
|
||||
linenos=true,
|
||||
breaklines=true,
|
||||
encoding=utf8,
|
||||
fontsize=\small,
|
||||
% frame=lines
|
||||
}
|
||||
\usepackage{multicol}
|
||||
|
||||
\lstdefinelanguage{myagda}{
|
||||
keywords=[1]{
|
||||
data, where
|
||||
},
|
||||
keywordstyle=[1]\color{agda-keyword},
|
||||
keywords=[2]{
|
||||
Delay, Set, foldl, Colist, reverse, reverseAcc, run_for_steps, run, for, steps, fin-colist, inf-colist, never, head, List, Maybe
|
||||
},
|
||||
keywordstyle=[2]\color{agda-name},
|
||||
keywords=[3]{
|
||||
now, later, zero, suc, just, nothing, nil, cons
|
||||
},
|
||||
keywordstyle=[3]\color{agda-constructor}
|
||||
}
|
||||
|
||||
\lstset{style=mystyle}
|
||||
\usepackage{noto-mono}
|
||||
% \usepackage{fontspec}
|
||||
% \setmonofont{Noto Sans Mono}
|
||||
|
||||
\usepackage{lmodern}
|
||||
|
||||
|
@ -236,6 +186,8 @@ at (#3) {#4};
|
|||
\end{frame}
|
||||
|
||||
\input{sections/00_intro.tex}
|
||||
\input{sections/01_abstracting.tex}
|
||||
\input{sections/02_goals.tex}
|
||||
|
||||
% Stylized outline
|
||||
%\begin{frame}[title]{-}
|
||||
|
|
|
@ -1,27 +1,29 @@
|
|||
\section{Partiality in Type Theory}
|
||||
\begin{frame}[t, fragile]{Partiality in Haskell}{}
|
||||
\begin{itemize}[<+->]
|
||||
\item Haskell allows users to define arbitrary partial functions, some can be spotted easily by their definition:
|
||||
\begin{itemize}
|
||||
\item<1-> Haskell allows users to define arbitrary partial functions, some can be spotted easily by their definition:
|
||||
\vskip 1cm
|
||||
\begin{lstlisting}[language=myhaskell, linewidth=12cm]
|
||||
\begin{minted}{agda}
|
||||
head :: [a] -> a
|
||||
head [] = error "empty list"
|
||||
head [] = error "empty list"
|
||||
head (x:xs) = x
|
||||
\end{lstlisting}
|
||||
\mycallout<3->{21, 1.5}{
|
||||
\end{minted}
|
||||
\mycallout<2->{21, 1.5}{
|
||||
ghci> head []\\
|
||||
*** Exception: empty list\\
|
||||
CallStack (from HasCallStack):\\
|
||||
error, called at example.hs:2:9 in main:Main
|
||||
}
|
||||
\item
|
||||
\item<3->
|
||||
others might be more subtle:
|
||||
\vskip 1cm
|
||||
\begin{lstlisting}[language=myhaskell, linewidth=12cm]
|
||||
reverse l = rev l []
|
||||
where
|
||||
rev [] a = a
|
||||
rev (x:xs) a = rev xs (x:a)
|
||||
\end{lstlisting}
|
||||
\begin{minted}{agda}
|
||||
reverse :: [a] -> [a]
|
||||
reverse l = reverseAcc l []
|
||||
where
|
||||
reverseAcc [] a = a
|
||||
reverseAcc (x:xs) a = reverseAcc xs (x:a)
|
||||
\end{minted}
|
||||
|
||||
\mycallout<4->{21, 2}{
|
||||
ghci> ones = 1 : ones\\
|
||||
|
@ -30,7 +32,6 @@ where
|
|||
}
|
||||
\end{itemize}
|
||||
|
||||
% TODO right of this add error bubble that shows `reverse ones`
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Partiality in Agda}{The Maybe Monad}
|
||||
|
@ -38,59 +39,56 @@ In Agda every function has to be total and terminating, so how do we model parti
|
|||
|
||||
\begin{itemize}[<+->]
|
||||
\item Simple errors can be modelled with the maybe monad
|
||||
\begin{lstlisting}[linewidth=14cm, language=myagda]
|
||||
\begin{minted}{agda}
|
||||
data Maybe (A : Set) : Set where
|
||||
just : A $\rightarrow$ Maybe A
|
||||
just : A → Maybe A
|
||||
nothing : Maybe A
|
||||
\end{lstlisting}
|
||||
\end{minted}
|
||||
|
||||
for head we can then do:
|
||||
|
||||
\begin{lstlisting}[linewidth=14cm, language=myagda]
|
||||
head : $\forall$ A $\rightarrow$ List A $\rightarrow$ Maybe A
|
||||
head nil = nothing
|
||||
\begin{minted}{agda}
|
||||
head : ∀ A → List A → Maybe A
|
||||
head nil = nothing
|
||||
head (cons x xs) = just x
|
||||
\end{lstlisting}
|
||||
\end{minted}
|
||||
|
||||
\item What about \lstinline|reverse|?
|
||||
\item What about \mintinline{agda}|reverse|?
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Partiality in Agda}{Capretta's Delay Monad}
|
||||
\begin{itemize}[<+->]
|
||||
\item Capretta's Delay Monad is a \textbf{coinductive} data type whose inhabitants can be viewed as suspended computations.
|
||||
\begin{lstlisting}[linewidth=20cm, language=myagda]
|
||||
\begin{minted}{agda}
|
||||
data Delay (A : Set) : Set where
|
||||
now : A $\rightarrow$ Delay A
|
||||
later : $\infty$ (Delay A) $\rightarrow$ Delay A
|
||||
\end{lstlisting}
|
||||
now : A → Delay A
|
||||
later : ∞ (Delay A) → Delay A
|
||||
\end{minted}
|
||||
\item The delay datatype contains a constant for non-termination:
|
||||
\begin{lstlisting}[linewidth=20cm, language=myagda]
|
||||
\begin{minted}{agda}
|
||||
never : Delay A
|
||||
never = later ($\sharp$ never)
|
||||
\end{lstlisting}
|
||||
never = later (♯ never)
|
||||
\end{minted}
|
||||
\item and we can define a function for \textit{running} a computation (for some amount of steps):
|
||||
|
||||
\begin{lstlisting}[linewidth=20cm, language=myagda]
|
||||
run_for_steps : Delay A $\rightarrow$ $\mathbb{N}$ $\rightarrow$ Delay A
|
||||
\begin{minted}{agda}
|
||||
run_for_steps : Delay A → ℕ → Delay A
|
||||
run now x for n steps = now x
|
||||
run later x for zero steps = later x
|
||||
run later x for suc n steps = run $\flat$ x for n steps
|
||||
\end{lstlisting}
|
||||
run later x for suc n steps = run ♭ x for n steps
|
||||
\end{minted}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[c, fragile]{Partiality in Agda}{Reversing (possibly infinite) lists}
|
||||
\centering
|
||||
\begin{lstlisting}[language=myagda]
|
||||
foldl : $\forall$ {A B : Set} $\rightarrow$ (A $\rightarrow$ B $\rightarrow$ A) $\rightarrow$ A $\rightarrow$ Colist B $\rightarrow$ Delay A
|
||||
foldl c n [] = now n
|
||||
foldl c n (x $\squaredots$ xs) = later ($\sharp$ foldl c (c n x) ($\flat$ xs))
|
||||
|
||||
reverse : $\forall$ {A : Set} $\rightarrow$ Colist A $\rightarrow$ Delay (Colist A)
|
||||
\begin{minted}{agda}
|
||||
reverse : ∀ {A : Set} → Colist A → Delay (Colist A)
|
||||
reverse {A} = reverseAcc []
|
||||
where
|
||||
reverseAcc : Colist A $\rightarrow$ Colist A $\rightarrow$ Delay (Colist A)
|
||||
reverseAcc = foldl ($\lambda$ xs x $\rightarrow$ x $\squaredots$ ($\sharp$ xs))
|
||||
\end{lstlisting}
|
||||
reverseAcc : Colist A → Colist A → Delay (Colist A)
|
||||
reverseAcc [] a = now a
|
||||
reverseAcc (x ∷ xs) a = later (♯ reverseAcc (♭ xs) (x ∷ (♯ a)))
|
||||
\end{minted}
|
||||
\end{frame}
|
56
slides/sections/01_abstracting.tex
Normal file
56
slides/sections/01_abstracting.tex
Normal file
|
@ -0,0 +1,56 @@
|
|||
\section{Categorical Notions of Partiality}
|
||||
|
||||
% \begin{frame}[t, fragile]{Classifying Partiality Monads}
|
||||
% A partiality monad should have the following properties:
|
||||
% \begin{itemize}
|
||||
% \item The following two programs should yield equal results:
|
||||
% \begin{multicols}{2}
|
||||
% \begin{minted}{haskell}
|
||||
% do x <- p
|
||||
% y <- q
|
||||
% return (x, y)
|
||||
% \end{minted}
|
||||
|
||||
% \begin{minted}{haskell}
|
||||
% do y <- q
|
||||
% x <- p
|
||||
% return (x, y)
|
||||
% \end{minted}
|
||||
% \end{multicols}
|
||||
% where p and q are (partial) computations.
|
||||
% \end{itemize}
|
||||
% \end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Capturing Partiality Categorically}
|
||||
\begin{itemize}
|
||||
\item moggi denotational semantics (values A, computations TA)
|
||||
|
||||
\item restriction categories
|
||||
|
||||
\item equational lifting monads
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{The Maybe Monad}
|
||||
\begin{itemize}
|
||||
\item Short definition
|
||||
\item is equational lifting monad
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{The Delay Monad}
|
||||
\begin{itemize}
|
||||
\item Definition
|
||||
\item Strong-Bisimilarity
|
||||
\item Weak-Bisimilarity (Monad?)
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Iteration}
|
||||
\begin{itemize}
|
||||
\item Elgot-Algebras
|
||||
\item Free Elgot-Algebras yield monad K
|
||||
\item K is equational lifting
|
||||
\item K instantiates to maybe and delay
|
||||
\end{itemize}
|
||||
\end{frame}
|
24
slides/sections/02_goals.tex
Normal file
24
slides/sections/02_goals.tex
Normal file
|
@ -0,0 +1,24 @@
|
|||
\section{Implementation in Agda}
|
||||
|
||||
\begin{frame}[t, fragile]{Goals}
|
||||
\begin{itemize}
|
||||
\item Formalize delay monad (categorically as terminal coalgebra) + properties
|
||||
\item Formalize K + properties
|
||||
\item Case study on Setoids
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Category theory in Agda}
|
||||
agda-categories
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{What I managed to show}
|
||||
TODO
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Further work}
|
||||
\begin{itemize}
|
||||
\item Show that $\tilde{D}$ is monad (under conditions)
|
||||
\item Show that $K \cong \tilde{D}$ (under conditions)
|
||||
\end{itemize}
|
||||
\end{frame}
|
|
@ -53,7 +53,7 @@
|
|||
\chaptermark{#1}%
|
||||
\addcontentsline{toc}{chapter}{#1}}
|
||||
|
||||
\newcommand\C{\mathcal{C}}
|
||||
%\newcommand\C{\mathcal{C}}
|
||||
|
||||
\declaretheorem[name=Definition,style=definition,numberwithin=chapter]{definition}
|
||||
\declaretheorem[name=Example,style=definition,sibling=definition]{example}
|
||||
|
@ -90,8 +90,9 @@
|
|||
\newcommand*{\theauthor}{\@author}
|
||||
\makeatother
|
||||
|
||||
\usepackage{fontspec}
|
||||
\setmonofont{Noto Sans Mono}
|
||||
\usepackage{noto-mono}
|
||||
%\usepackage{fontspec}
|
||||
%\setmonofont{Noto Sans Mono}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
|
|
@ -149,7 +149,7 @@ When modelling partiality with a monad, one would expect the following two progr
|
|||
\end{multicols}
|
||||
where p and q are (partial) computations. This condition can be expressed categorically, but first we need another definition:
|
||||
|
||||
\begin{definition}[Strong Monad~\cite{moggi}] A monad $M$ on a cartesian category $\C$ is called strong if there exists a natural transformation $\tau_{X,Y} : X \times MY \rightarrow M(X \times Y)$, satisfying the following conditions:
|
||||
\begin{definition}[Strong Monad~\cite{moggi}] A monad $M$ on a cartesian category $\mathcal{C}$ is called strong if there exists a natural transformation $\tau_{X,Y} : X \times MY \rightarrow M(X \times Y)$, satisfying the following conditions:
|
||||
\begin{enumerate}
|
||||
\item $M\pi_2 \circ \tau_{1,X} = \pi_2$
|
||||
\item $M \alpha_{X,Y,Z} \circ \tau_{X \times Y, Z} = \tau_{X, Y\times Z} \circ (id_X \times \tau_{Y, Z}) \circ \alpha_{X,Y,MZ}$
|
||||
|
|
Loading…
Reference in a new issue