@ -1,6 +1,5 @@
<!--
<!--
```agda
```agda
{-# OPTIONS --allow-unsolved-metas #-}
open import Level
open import Level
open import Categories.Category
open import Categories.Category
open import Categories.Monad
open import Categories.Monad
@ -72,7 +71,6 @@ We then use Lambek's Lemma to gain an isomorphism `D X ≅ X + D X`, whose inver
unitlaw : out ∘ now ≈ i₁
unitlaw : out ∘ now ≈ i₁
unitlaw = cancelˡ (_≅_.isoʳ out-≅)
unitlaw = cancelˡ (_≅_.isoʳ out-≅)
```
```
Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use the final coalgebras to get a *coiteration operator* `coit` :
Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use the final coalgebras to get a *coiteration operator* `coit` :
@ -100,7 +98,6 @@ At the same time the morphism `X × N ⇒ X + X × N` is a coalgebra for the `(Y
ι : X × N ⇒ DX
ι : X × N ⇒ DX
ι = u (! {A = record { A = X × N ; α = _≅_ .from nno-iso }})
ι = u (! {A = record { A = X × N ; α = _≅_ .from nno-iso }})
```
```
## Delay is a monad
## Delay is a monad
@ -294,7 +291,7 @@ Next we will show that the delay monad is strong, by giving a natural transforma
open import Categories.Category.Monoidal.Core
open import Categories.Category.Monoidal.Core
open Monoidal monoidal
open Monoidal monoidal
open import Categories.Monad.Relative using () renaming (Monad to RMonad)
open import Categories.Monad.Relative using () renaming (Monad to RMonad)
open RMonad kleisli using (extend) renaming (assoc to k-assoc)
open RMonad kleisli using (extend; extend-≈ ) renaming (assoc to k-assoc; identityʳ to k-identityʳ )
open import Categories.Category.Product renaming (Product to CProduct; _⁂_ to _× C_ )
open import Categories.Category.Product renaming (Product to CProduct; _⁂_ to _× C_ )
open Monad monad using () renaming (η to η'; μ to μ')
open Monad monad using () renaming (η to η'; μ to μ')
module η = NaturalTransformation η'
module η = NaturalTransformation η'
@ -346,6 +343,15 @@ Next we will show that the delay monad is strong, by giving a natural transforma
out⁻¹ ∘ (idC +₁ τ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ∘ (idC ⁂ out⁻¹) ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ (elimʳ (⁂∘⁂ ○ (⁂-cong₂ identity² (_≅_.isoʳ out-≅)) ○ ((⟨⟩-cong₂ identityˡ identityˡ) ○ ⁂-η)))) ⟩
out⁻¹ ∘ (idC +₁ τ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ∘ (idC ⁂ out⁻¹) ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ (elimʳ (⁂∘⁂ ○ (⁂-cong₂ identity² (_≅_.isoʳ out-≅)) ○ ((⟨⟩-cong₂ identityˡ identityˡ) ○ ⁂-η)))) ⟩
out⁻¹ ∘ (idC +₁ τ) ∘ distributeˡ⁻¹ ∎
out⁻¹ ∘ (idC +₁ τ) ∘ distributeˡ⁻¹ ∎
τ-now : τ ∘ (idC ⁂ now) ≈ now
τ-now = begin
τ ∘ (idC ⁂ now) ≈⟨ refl⟩∘⟨ sym (⁂∘⁂ ○ (⁂-cong₂ identity² refl)) ⟩
τ ∘ (idC ⁂ out⁻¹) ∘ (idC ⁂ i₁) ≈⟨ pullˡ τ-helper ⟩
(out⁻¹ ∘ (idC +₁ τ) ∘ distributeˡ⁻¹) ∘ (idC ⁂ i₁) ≈⟨ pullʳ (pullʳ dstr-law₁) ⟩
out⁻¹ ∘ (idC +₁ τ) ∘ i₁ ≈⟨ refl⟩∘⟨ +₁∘i₁ ⟩
out⁻¹ ∘ i₁ ∘ idC ≈⟨ refl⟩∘⟨ identityʳ ⟩
now ∎
τ-unique : (t : X × D₀ Y ⇒ D₀ (X × Y)) → (out ∘ t ≈ (idC +₁ t) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out)) → t ≈ τ
τ-unique : (t : X × D₀ Y ⇒ D₀ (X × Y)) → (out ∘ t ≈ (idC +₁ t) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out)) → t ≈ τ
τ-unique t t-commutes = sym (!-unique (record { f = t ; commutes = t-commutes }))
τ-unique t t-commutes = sym (!-unique (record { f = t ; commutes = t-commutes }))
@ -388,52 +394,71 @@ Next we will show that the delay monad is strong, by giving a natural transforma
π₂ ∘ distributeˡ ∘ distributeˡ⁻¹ ≈⟨ pullˡ ∘[] ⟩
π₂ ∘ distributeˡ ∘ distributeˡ⁻¹ ≈⟨ pullˡ ∘[] ⟩
[ π₂ ∘ ((idC ⁂ i₁)) , π₂ ∘ (idC ⁂ i₂) ] ∘ distributeˡ⁻¹ ≈⟨ ([]-cong₂ π₂∘⁂ π₂∘⁂) ⟩∘⟨refl ⟩
[ π₂ ∘ ((idC ⁂ i₁)) , π₂ ∘ (idC ⁂ i₂) ] ∘ distributeˡ⁻¹ ≈⟨ ([]-cong₂ π₂∘⁂ π₂∘⁂) ⟩∘⟨refl ⟩
(π₂ +₁ π₂) ∘ distributeˡ⁻¹ ∎)
(π₂ +₁ π₂) ∘ distributeˡ⁻¹ ∎)
μ-η-comm' : ∀ {X Y} → extend idC ∘ (extend (now ∘ τ _)) ∘ τ _ ≈ τ (X , Y) ∘ (idC ⁂ extend idC)
μ-η-comm' : ∀ {X Y} → extend idC ∘ (extend (now ∘ τ _)) ∘ τ _ ≈ τ (X , Y) ∘ (idC ⁂ extend idC)
μ-η-comm' {X} {Y} = begin
μ-η-comm' {X} {Y} = begin
extend idC ∘ (extend (now ∘ τ _)) ∘ τ _ ≈⟨ sym (Terminal.!-unique (coalgebras (X × Y)) (record { f = extend idC ∘ (extend (now ∘ τ _)) ∘ τ _ ; commutes = begin
extend idC ∘ (extend (now ∘ τ _)) ∘ τ _ ≈⟨ sym (Terminal.!-unique (coalgebras (X × Y)) (record { f = extend idC ∘ (extend (now ∘ τ _)) ∘ τ _ ; commutes = begin
out ∘ extend idC ∘ extend (now ∘ τ (X , Y)) ∘ τ _ ≈⟨ pullˡ (extendlaw idC) ⟩
out ∘ extend idC ∘ extend (now ∘ τ (X , Y)) ∘ τ _ ≈⟨ refl⟩∘⟨ (pullˡ id*∘Dτ) ⟩
([ out ∘ idC , i₂ ∘ extend idC ] ∘ out) ∘ extend (now ∘ τ (X , Y)) ∘ τ _ ≈⟨ pullʳ (pullˡ (extendlaw (now ∘ τ (X , Y)))) ⟩
out ∘ extend (τ (X , Y)) ∘ τ _ ≈⟨ square ⟩
[ out ∘ idC , i₂ ∘ extend idC ] ∘ ([ out ∘ now ∘ τ _ , i₂ ∘ extend (now ∘ τ _ ) ] ∘ out) ∘ τ _ ≈⟨ refl⟩∘⟨ (pullʳ (τ-law _ )) ⟩
[ out ∘ τ _ , i₂ ∘ extend (τ _ ) ] ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ sym-assoc ○ sym-assoc ○ (assoc ○ tri) ⟩∘⟨refl ⟩
[ out ∘ idC , i₂ ∘ extend idC ] ∘ [ out ∘ now ∘ τ _ , i₂ ∘ extend (now ∘ τ _ ) ] ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ (sym []∘+₁) ⟩∘⟨ (([]-cong₂ (pullˡ unitlaw) refl) ⟩∘⟨refl) ⟩
((idC +₁ extend (τ _) ∘ τ _ ) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹) ∘ (idC ⁂ out) ≈⟨ assoc ○ refl⟩∘⟨ assoc ⟩
([ out , i₂ ] ∘ (idC +₁ extend idC)) ∘ (τ _ +₁ extend (now ∘ τ _ )) ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
(idC +₁ (extend (τ _) ∘ τ _ )) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ (+₁-cong₂ refl (sym (pullˡ id*∘Dτ))) ⟩∘⟨refl ⟩
{! !} ≈⟨ {! !} ⟩
(idC +₁ (extend idC ∘ extend (now ∘ τ (X , Y)) ∘ τ _)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ∎ })) ⟩
-- TODO only works if (now +₁ now) ∘ out ≈ out ∘ now
u (Terminal.! (coalgebras (X × Y)) {A = record { A = X × D₀ (D₀ Y) ; α = [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) }}) ≈⟨ Terminal.!-unique (coalgebras (X × Y)) (record { f = τ _ ∘ (idC ⁂ extend idC) ; commutes = begin
{! !} ≈⟨ {! !} ⟩
out ∘ τ _ ∘ (idC ⁂ extend idC) ≈⟨ pullˡ (τ-law (X , Y)) ⟩
[ out , i₂ ] ∘ (idC +₁ extend idC) ∘ (τ _ +₁ extend (now ∘ τ _ )) ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ (now +₁ idC) ∘ (idC +₁ now) ∘ out , (now +₁ idC) ∘ i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
((idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out)) ∘ (idC ⁂ extend idC) ≈⟨ pullʳ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² refl)) ⟩
[ out , i₂ ] ∘ (idC +₁ extend idC) ∘ (τ _ +₁ extend (now ∘ τ _ )) ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (now +₁ idC) ∘ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out ∘ extend idC) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂-cong₂ refl (extendlaw idC) ⟩
[ out , i₂ ] ∘ (idC +₁ extend idC) ∘ (τ _ +₁ extend (now ∘ τ _ )) ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ (now +₁ idC)) ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out ∘ idC , i₂ ∘ extend idC ] ∘ out) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ⁂-cong₂ refl (([]-cong₂ identityʳ refl) ⟩∘⟨refl) ⟩
[ out , i₂ ] ∘ (idC +₁ extend idC) ∘ (τ _ +₁ extend (now ∘ τ _ )) ∘ (idC +₁ τ _) ∘ ((idC ⁂ now) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out , i₂ ∘ extend idC ] ∘ out) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym (⁂∘⁂ ○ ⁂-cong₂ identity² refl) ⟩
[ out ∘ (τ _ ∘ (idC ⁂ now)) , i₂ ] ∘ (idC +₁ extend idC) ∘ (idC +₁ extend (now ∘ τ _ )) ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out , i₂ ∘ extend idC ]) ∘ (idC ⁂ out) ≈⟨ sym-assoc ○ pullˡ (assoc ○ tri₂) ⟩
[ out ∘ now , i₂ ] ∘ (idC +₁ extend idC) ∘ (idC +₁ extend (now ∘ τ _)) ∘ (idC +₁ τ _ ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
((idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹) ∘ (idC ⁂ out) ≈⟨ assoc ○ refl⟩∘⟨ assoc ⟩
(idC +₁ extend idC) ∘ (idC +₁ extend (now ∘ τ _)) ∘ (idC +₁ τ _ ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ≈⟨ {! !} ⟩
(idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ∎ }) ⟩
(idC +₁ (extend idC ∘ extend (now ∘ τ (X , Y)) ∘ τ _)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) ∎ })) ⟩
u (Terminal.! (coalgebras (X × Y)) {A = record { A = X × D₀ (D₀ Y) ; α = distributeˡ⁻¹ ∘ (idC ⁂ [ (idC +₁ now) ∘ out , i₂ ]) ∘ (idC ⁂ out) }}) ≈⟨ {! !} ⟩
τ _ ∘ (idC ⁂ extend idC) ∎
τ _ ∘ (idC ⁂ extend idC) ∎
where
where
β : ∀ {A} → D₀ A + D₀ (D₀ A) ⇒ A + D₀ (D₀ A)
-- diagram: https://q.uiver.app/#q=WzAsNyxbMCwwLCJYXFx0aW1lcyBERFkiXSxbMiwwLCJEKFhcXHRpbWVzIERZKSJdLFs0LDAsIkREKFhcXHRpbWVzIFkpIl0sWzAsMiwiWFxcdGltZXMgKERZK0REWSkiXSxbMiwyLCJYXFx0aW1lcyBEWSsgWFxcdGltZXMgRERZIl0sWzQsMiwiWFxcdGltZXMgWSsgREQoWFxcdGltZXMgWSkiXSxbMCw0LCJYXFx0aW1lcyBZKyBYXFx0aW1lcyBERFkiXSxbMCwzLCJpZFxcdGltZXMgb3V0IiwyXSxbMCwxLCJcXHRhdSJdLFsxLDIsIlxcdGF1XioiXSxbMyw0LCIoaWQrXFx0YXUpZGlzdCJdLFs0LDUsIltvdXRcXHRhdSxpbnJcXHRhdV4qXSJdLFsyLDUsIm91dCJdLFsxLDRdLFs2LDUsImlkK1xcdGF1XipcXHRhdSIsMl0sWzMsNiwiWyhpZCArIGlkXFx0aW1lcyBub3cpZGlzdCAoaWRcXHRpbWVzIG91dCksaW5yXWRpc3QiLDJdXQ==
β {A} = [ ((idC +₁ now) ∘ out) , i₂ ]
square : out ∘ extend (τ (X , Y)) ∘ τ _ ≈ [ out ∘ τ _ , i₂ ∘ extend (τ _) ] ∘ (idC +₁ τ _ ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out)
β⁻¹ : ∀ {A} → A + D₀ (D₀ A) ⇒ D₀ A + D₀ (D₀ A)
square = begin
β⁻¹ {A} = [ (i₁ ∘ now) , i₂ ]
out ∘ extend (τ (X , Y)) ∘ τ _ ≈⟨ pullˡ (extendlaw (τ (X , Y))) ⟩
β∘β⁻¹ : ∀ {A} → β {A} ∘ β⁻¹ ≈ idC
([ out ∘ τ (X , Y) , i₂ ∘ extend (τ (X , Y)) ] ∘ out) ∘ τ _ ≈⟨ pullʳ (τ-law _ ) ⟩
β∘β⁻¹ = begin
[ out ∘ τ _ , i₂ ∘ extend (τ _ ) ] ∘ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ∎
[ ((idC +₁ now) ∘ out) , i₂ ] ∘ [ (i₁ ∘ now) , i₂ ] ≈⟨ ∘[] ⟩
tri : [ out ∘ τ _ , i₂ ∘ extend (τ (X , Y)) ] ∘ (idC +₁ τ _ ) ∘ distributeˡ⁻¹ ≈ (idC +₁ extend (τ _) ∘ τ _ ) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹
[ [ ((idC +₁ now) ∘ out) , i₂ ] ∘ (i₁ ∘ now) , [ ((idC +₁ now) ∘ out) , i₂ ] ∘ i₂ ] ≈⟨ []-cong₂ (pullˡ inject₁) inject₂ ⟩
tri = begin
[ ((idC +₁ now) ∘ out) ∘ now , i₂ ] ≈⟨ []-cong₂ (pullʳ unitlaw) refl ⟩
[ out ∘ τ _ , i₂ ∘ extend (τ (X , Y)) ] ∘ (idC +₁ τ _ ) ∘ distributeˡ⁻¹ ≈⟨ pullˡ []∘+₁ ⟩
[ (idC +₁ now) ∘ i₁ , i₂ ] ≈⟨ []-cong₂ (+₁∘i₁ ○ identityʳ) refl ⟩
[ (out ∘ τ _) ∘ idC , (i₂ ∘ extend (τ (X , Y))) ∘ τ _ ] ∘ distributeˡ⁻¹ ≈⟨ ([]-cong₂ (identityʳ ○ τ-law (X , Y)) assoc) ⟩∘⟨refl ⟩
[ i₁ , i₂ ] ≈⟨ +-η ⟩
[ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ∘ extend (τ (X , Y)) ∘ τ _ ] ∘ distributeˡ⁻¹ ≈⟨ sym (([]-cong₂ ((+₁-cong₂ refl k-identityʳ) ⟩∘⟨refl) refl) ⟩∘⟨refl) ⟩
idC ∎
[ (idC +₁ extend (τ _) ∘ now) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ∘ extend (τ _ ) ∘ τ _ ] ∘ distributeˡ⁻¹ ≈⟨ sym (([]-cong₂ ((+₁-cong₂ identity² (pullʳ (τ-now (X , D₀ Y)))) ⟩∘⟨refl) refl) ⟩∘⟨refl) ⟩
-- diag₁ : ((idC ⁂ now) +₁ τ _) ∘ distributeˡ⁻¹ {X} {Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ [ (idC +₁ now) ∘ out , i₂ ] ∘ out) ≈ out ∘ τ _
[ (idC ∘ idC +₁ (extend (τ _) ∘ τ _ ) ∘ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ∘ extend (τ _) ∘ τ _ ] ∘ distributeˡ⁻¹ ≈⟨ sym (([]-cong₂ (pullˡ +₁∘+₁) +₁∘i₂) ⟩∘⟨refl) ⟩
-- diag₁ = begin
[ (idC +₁ extend (τ _) ∘ τ _ ) ∘ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , (idC +₁ extend (τ _) ∘ τ _ ) ∘ i₂ ] ∘ distributeˡ⁻¹ ≈⟨ sym (pullˡ ∘[]) ⟩
-- ((idC ⁂ now) +₁ τ _) ∘ distributeˡ⁻¹ {X} {Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ [ (idC +₁ now) ∘ out , i₂ ] ∘ out) ≈⟨ {! !} ⟩
(idC +₁ extend (τ _) ∘ τ _ ) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∎
-- (idC +₁ τ _) ∘ ((idC ⁂ now) +₁ idC) ∘ distributeˡ⁻¹ {X} {Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ [ (idC +₁ now) ∘ out , i₂ ] ∘ out) ≈⟨ {! !} ⟩
id*∘Dτ : extend idC ∘ extend (now ∘ τ _) ≈ extend (τ _ )
-- (idC +₁ τ _) ∘ distributeˡ⁻¹ {X} {D₀ Y} {D₀ (D₀ Y)} ∘ ((idC ⁂ (now +₁ idC))) ∘ ( idC ⁂ [ (idC +₁ now) ∘ out , i₂ ] ∘ out) ≈⟨ {! !} ⟩
id*∘Dτ = begin
-- (idC +₁ τ _) ∘ distributeˡ⁻¹ {X} {D₀ Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ [ (now +₁ idC) ∘ (idC +₁ now) ∘ out , (now +₁ idC) ∘ i₂ ] ∘ out) ≈⟨ {! !} ⟩
extend idC ∘ extend (now ∘ τ _) ≈⟨ sym k-assoc ⟩
-- (idC +₁ τ _) ∘ distributeˡ⁻¹ {X} {D₀ Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ [ (now +₁ now) ∘ out , i₂ ] ∘ out) ≈⟨ {! !} ⟩
extend (extend idC ∘ now ∘ τ _) ≈⟨ extend-≈ (pullˡ k-identityʳ) ⟩
-- (idC +₁ τ _) ∘ distributeˡ⁻¹ {X} {D₀ Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ [ out ∘ now , i₂ ] ∘ out) ≈⟨ {! !} ⟩
extend (idC ∘ τ _) ≈⟨ extend-≈ identityˡ ⟩
-- (idC +₁ τ _) ∘ distributeˡ⁻¹ {X} {D₀ Y} {D₀ (D₀ Y)} ∘ ( idC ⁂ out) ≈⟨ sym (τ-law (X , A (Terminal.⊤ (coalgebras Y)))) ⟩
extend (τ _) ∎
-- out ∘ τ _ ∎
tri₂' : (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out , i₂ ∘ extend idC ]) ∘ [ (idC ⁂ i₁) , (idC ⁂ i₂) ] ≈ (idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∘ distributeˡ
diag₂ = τ-law
tri₂' = begin
diag₃ = out-law {Y = D₀ (X × Y)} (extend idC)
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out , i₂ ∘ extend idC ]) ∘ [ (idC ⁂ i₁) , (idC ⁂ i₂) ] ≈⟨ refl⟩∘⟨ (refl⟩∘⟨ ∘[]) ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ [ (idC ⁂ [ out , i₂ ∘ extend idC ]) ∘ (idC ⁂ i₁) , (idC ⁂ [ out , i₂ ∘ extend idC ]) ∘ (idC ⁂ i₂) ] ≈⟨ refl⟩∘⟨ refl⟩∘⟨ []-cong₂ ⁂∘⁂ ⁂∘⁂ ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ [ (idC ∘ idC ⁂ [ out , i₂ ∘ extend idC ] ∘ i₁) , (idC ∘ idC ⁂ [ out , i₂ ∘ extend idC ] ∘ i₂) ] ≈⟨ refl⟩∘⟨ refl⟩∘⟨ []-cong₂ (⁂-cong₂ identity² inject₁) (⁂-cong₂ identity² inject₂) ⟩
(idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ [ idC ⁂ out , idC ⁂ i₂ ∘ extend idC ] ≈⟨ refl⟩∘⟨ ∘[] ⟩
(idC +₁ τ _) ∘ [ distributeˡ⁻¹ ∘ (idC ⁂ out) , distributeˡ⁻¹ ∘ (idC ⁂ i₂ ∘ extend idC) ] ≈⟨ ∘[] ⟩
[ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , (idC +₁ τ _ ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ i₂ ∘ extend idC) ] ≈⟨ sym ([]-cong₂ refl (pullʳ (pullʳ (⁂∘⁂ ○ ⁂-cong₂ identity² refl)))) ⟩
[ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , ((idC +₁ τ _ ) ∘ distributeˡ⁻¹ ∘ (idC ⁂ i₂)) ∘ (idC ⁂ extend idC) ] ≈⟨ []-cong₂ refl ((refl⟩∘⟨ dstr-law₂) ⟩∘⟨refl) ⟩
[ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , ((idC +₁ τ _ ) ∘ i₂) ∘ (idC ⁂ extend idC) ] ≈⟨ []-cong₂ refl (pushˡ +₁∘i₂) ⟩
[ (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ∘ τ _ ∘ (idC ⁂ extend idC) ] ≈⟨ []-cong₂ ((+₁-cong₂ refl (introʳ (⟨⟩-unique id-comm (id-comm ○ (sym k-identityʳ) ⟩∘⟨refl)))) ⟩∘⟨refl) refl ⟩
[ (idC +₁ τ _ ∘ (idC ⁂ extend idC ∘ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ∘ τ _ ∘ (idC ⁂ extend idC) ] ≈⟨ []-cong₂ ((sym (+₁-cong₂ refl (refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ identity² refl)))) ⟩∘⟨refl) refl ⟩
[ (idC +₁ τ _ ∘ (idC ⁂ extend idC) ∘ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ∘ τ _ ∘ (idC ⁂ extend idC) ] ≈⟨ sym ([]-cong₂ (pullˡ (+₁∘+₁ ○ +₁-cong₂ identity² assoc)) +₁∘i₂) ⟩
[ (idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , (idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ i₂ ] ≈⟨ sym ∘[] ⟩
(idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ≈⟨ sym (refl⟩∘⟨ (elimʳ (IsIso.isoˡ isIsoˡ))) ⟩
(idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹ ∘ distributeˡ ∎
tri₂ : (idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out , i₂ ∘ extend idC ]) ≈ (idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹
tri₂ = iso-epi-from
(record { from = distributeˡ ; to = distributeˡ⁻¹ ; iso = IsIso.iso isIsoˡ })
((idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ [ out , i₂ ∘ extend idC ]))
((idC +₁ τ _ ∘ (idC ⁂ extend idC)) ∘ [ (idC +₁ (idC ⁂ now)) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) , i₂ ] ∘ distributeˡ⁻¹)
(assoc ○ refl⟩∘⟨ assoc ○ tri₂' ○ sym-assoc ○ sym-assoc ○ assoc ⟩∘⟨refl)
strength-assoc' : ∀ {X Y Z} → extend (now ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ τ ((X × Y), Z) ≈ τ _ ∘ (idC ⁂ τ _ ) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩
strength-assoc' : ∀ {X Y Z} → extend (now ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ τ ((X × Y), Z) ≈ τ _ ∘ (idC ⁂ τ _ ) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩
strength-assoc' {X} {Y} {Z} = begin
strength-assoc' {X} {Y} {Z} = begin
extend (now ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ τ _ ≈⟨ sym (Terminal.!-unique (coalgebras (X × Y × Z)) (record { f = extend (now ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ τ _ ; commutes = begin
extend (now ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ τ _ ≈⟨ sym (Terminal.!-unique (coalgebras (X × Y × Z)) (record { f = extend (now ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ τ _ ; commutes = begin
@ -487,11 +512,10 @@ Next we will show that the delay monad is strong, by giving a natural transforma
(distributeˡ⁻¹ ∘ ⟨ idC ∘ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ distributeˡ ∘ distributeˡ⁻¹ ≈⟨ sym (introʳ (IsIso.isoʳ isIsoˡ)) ⟩
(distributeˡ⁻¹ ∘ ⟨ idC ∘ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩) ∘ distributeˡ ∘ distributeˡ⁻¹ ≈⟨ sym (introʳ (IsIso.isoʳ isIsoˡ)) ⟩
distributeˡ⁻¹ ∘ ⟨ idC ∘ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ sym (refl⟩∘⟨ ⁂∘⟨⟩) ⟩
distributeˡ⁻¹ ∘ ⟨ idC ∘ π₁ ∘ π₁ , distributeˡ⁻¹ ∘ ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ≈⟨ sym (refl⟩∘⟨ ⁂∘⟨⟩) ⟩
distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∎)
distributeˡ⁻¹ ∘ (idC ⁂ distributeˡ⁻¹) ∘ ⟨ π₁ ∘ π₁ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ⟩ ∎)
{- ⁂ ⊤ ○
-- {- ⁂ ⊤ ○
Diagram for identityˡ':
-- Diagram for identityˡ':
https://q.uiver.app/#q=WzAsOSxbMCwyLCIxIFxcdGltZXMgREIiXSxbMiwyLCIxIFxcdGltZXMgKEIgKyBEQikiXSxbNiwyLCIxIFxcdGltZXMgQiArIDEgXFx0aW1lcyBEQiJdLFswLDQsIkQoMSBcXHRpbWVzIEIpIl0sWzYsNCwiKDEgXFx0aW1lcyBCKSArIEQoMSBcXHRpbWVzIEIpIl0sWzAsNiwiREIiXSxbNiw2LCJCICsgREIiXSxbMCwwLCIxIFxcdGltZXMgREIiXSxbNiwwLCJCICsgMSBcXHRpbWVzIERCIl0sWzAsMSwiaWQgXFx0aW1lcyBvdXQiXSxbMSwyLCJkaXN0cmliXnstMX0iXSxbMCwzLCJcXHRhdSIsMl0sWzUsNiwib3V0IiwyXSxbMyw0LCJvdXQiLDJdLFsyLDQsImlkICsgXFx0YXUiXSxbMyw1LCJEIFxccGlfMiJdLFs0LDYsIlxccGlfMiArIEQgXFxwaV8yIl0sWzcsOCwiKFxccGlfMiArIGlkKSBcXGNpcmMgZGlzdHJpYl57LTF9IFxcY2lyYyAoaWQgXFx0aW1lcyBvdXQpIl0sWzcsMCwiaWQiXSxbOCwyLCJcXGxhbmdsZSAhICwgaWQgXFxyYW5nbGUgKyBpZCJdXQ==
-- https://q.uiver.app/#q=WzAsOSxbMCwyLCIxIFxcdGltZXMgREIiXSxbMiwyLCIxIFxcdGltZXMgKEIgKyBEQikiXSxbNiwyLCIxIFxcdGltZXMgQiArIDEgXFx0aW1lcyBEQiJdLFswLDQsIkQoMSBcXHRpbWVzIEIpIl0sWzYsNCwiKDEgXFx0aW1lcyBCKSArIEQoMSBcXHRpbWVzIEIpIl0sWzAsNiwiREIiXSxbNiw2LCJCICsgREIiXSxbMCwwLCIxIFxcdGltZXMgREIiXSxbNiwwLCJCICsgMSBcXHRpbWVzIERCIl0sWzAsMSwiaWQgXFx0aW1lcyBvdXQiXSxbMSwyLCJkaXN0cmliXnstMX0iXSxbMCwzLCJcXHRhdSIsMl0sWzUsNiwib3V0IiwyXSxbMyw0LCJvdXQiLDJdLFsyLDQsImlkICsgXFx0YXUiXSxbMyw1LCJEIFxccGlfMiJdLFs0LDYsIlxccGlfMiArIEQgXFxwaV8yIl0sWzcsOCwiKFxccGlfMiArIGlkKSBcXGNpcmMgZGlzdHJpYl57LTF9IFxcY2lyYyAoaWQgXFx0aW1lcyBvdXQpIl0sWzcsMCwiaWQiXSxbOCwyLCJcXGxhbmdsZSAhICwgaWQgXFxyYW5nbGUgKyBpZCJdXQ==
-}
-- -}
-- ⊤
commute' : ∀ {P₁ : Category.Obj (CProduct C C)} {P₂ : Category.Obj (CProduct C C)} (fg : _[_ ,_] (CProduct C C) P₁ P₂)
commute' : ∀ {P₁ : Category.Obj (CProduct C C)} {P₂ : Category.Obj (CProduct C C)} (fg : _[_ ,_] (CProduct C C) P₁ P₂)
→ τ P₂ ∘ ((fst fg) ⁂ extend (now ∘ (snd fg))) ≈ extend (now ∘ ((fst fg) ⁂ (snd fg))) ∘ τ P₁
→ τ P₂ ∘ ((fst fg) ⁂ extend (now ∘ (snd fg))) ≈ extend (now ∘ ((fst fg) ⁂ (snd fg))) ∘ τ P₁
commute' {(U , V)} {(W , X)} (f , g) = begin
commute' {(U , V)} {(W , X)} (f , g) = begin
@ -521,7 +545,7 @@ https://q.uiver.app/#q=WzAsOSxbMCwyLCIxIFxcdGltZXMgREIiXSxbMiwyLCIxIFxcdGltZXMgK
open Terminal (coalgebras (W × X))
open Terminal (coalgebras (W × X))
alg' : F-Coalgebra ((W × X) +-)
alg' : F-Coalgebra ((W × X) +-)
alg' = record { A = U × D₀ V ; α = ((f ⁂ g) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) }
alg' = record { A = U × D₀ V ; α = ((f ⁂ g) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) }
-- ⁂ ○ ˡ ʳ
strongMonad : StrongMonad monoidal
strongMonad : StrongMonad monoidal
strongMonad = record { M = monad ; strength = strength }
strongMonad = record { M = monad ; strength = strength }
```
```