Compare commits

..

4 commits

14 changed files with 207 additions and 385 deletions

View file

@ -29,7 +29,6 @@ push: all
Everything.agda: Everything.agda:
echo "{-# OPTIONS --guardedness #-}" > src/Everything.agda echo "{-# OPTIONS --guardedness #-}" > src/Everything.agda
git ls-files | egrep '^src/[^\.]*.l?agda(\.md)?' | grep -v 'index.lagda.md' | grep -v 'bsc.agda-lib' | sed -e 's|^src/[/]*|import |' -e 's|/|.|g' -e 's/.agda//' -e '/import Everything/d' -e 's/..md//' | LC_COLLATE='C' sort >> src/Everything.agda git ls-files | egrep '^src/[^\.]*.l?agda(\.md)?' | grep -v 'index.lagda.md' | grep -v 'bsc.agda-lib' | sed -e 's|^src/[/]*|import |' -e 's|/|.|g' -e 's/.agda//' -e '/import Everything/d' -e 's/..md//' | LC_COLLATE='C' sort >> src/Everything.agda
open: open:
firefox public/index.html firefox public/index.html

View file

@ -29,28 +29,22 @@ import Categories.Morphism.Properties as MP'
--> -->
## Summary ## Summary
We work in an ambient category that We work in an ambient distributive category.
This file contains some helper definitions that will be used throughout the development.
- is extensive (has finite coproducts and pullbacks along injections)
- is cartesian (has finite products, extensive + cartesian also gives a distributivity isomorphism)
- has a parametrized NNO
- has exponentials `X^`
```agda ```agda
module Category.Ambient where module Category.Ambient where
record Ambient (o e : Level) : Set (suc o ⊔ suc suc e) where record Ambient (o e : Level) : Set (suc (o ⊔ ⊔ e)) where
field field
C : Category o e C : Category o e
extensive : Extensive C distributive : Distributive C
cartesian : Cartesian C
: ParametrizedNNO (record { U = C ; cartesian = cartesian }) open Distributive distributive public
-- _^ : ∀ X → Exponential C (ParametrizedNNO.N ) X
cartesianCategory : CartesianCategory o e cartesianCategory : CartesianCategory o e
cartesianCategory = record { U = C ; cartesian = cartesian } cartesianCategory = record { U = C ; cartesian = cartesian }
open Category C renaming (id to idC) public open Category C renaming (id to idC) public
open Extensive extensive public
open Cocartesian cocartesian renaming (+-unique to []-unique) public open Cocartesian cocartesian renaming (+-unique to []-unique) public
open Cartesian cartesian public open Cartesian cartesian public
@ -65,14 +59,9 @@ module Category.Ambient where
braided = Symmetric.braided symmetric braided = Symmetric.braided symmetric
open BinaryProducts products renaming (η to ⁂-η; g-η to ⁂-g-η; unique to ⟨⟩-unique; unique to ⟨⟩-unique) public open BinaryProducts products renaming (η to ⁂-η; g-η to ⁂-g-η; unique to ⟨⟩-unique; unique to ⟨⟩-unique) public
open ParametrizedNNO public renaming (η to pnno-η)
open CartesianMonoidal cartesian using (×A≅A; A×≅A) public open CartesianMonoidal cartesian using (×A≅A; A×≅A) public
distributive : Distributive C
distributive = Extensive×Cartesian⇒Distributive C extensive cartesian
open Distributive distributive hiding (cartesian; cocartesian) public
open M' C open M' C
open HomReasoning open HomReasoning
open MR' C open MR' C

View file

@ -1,114 +1,46 @@
<!-- <!--
```agda ```agda
open import Level using (lift; Lift) renaming (suc to -suc) open import Level using (_⊔_) renaming (suc to -suc)
open import Category.Ambient open import Category.Ambient
open import Categories.Category.Instance.Setoids open import Categories.Category.Instance.Setoids
open import Categories.Category.Instance.Properties.Setoids.Extensive open import Categories.Category.Distributive
open import Categories.Category.Instance.Properties.Setoids.CCC
open import Categories.Category.Monoidal.Instance.Setoids open import Categories.Category.Monoidal.Instance.Setoids
open import Categories.Category.Instance.SingletonSet
open import Categories.Object.NaturalNumbers
open import Relation.Binary open import Relation.Binary
open import Data.Unit.Polymorphic using (tt; ) open import Function.Bundles using () renaming (Func to _⟶_)
open import Data.Empty.Polymorphic using (⊥) open import Data.Sum
open import Function.Bundles using (_⟨$⟩_) renaming (Func to _⟶_) open import Data.Sum.Relation.Binary.Pointwise
open import Function.Construct.Identity as idₛ open import Data.Product
open import Function.Construct.Setoid renaming (setoid to _⇨_; _∙_ to _∘_) import Categories.Morphism as M
open import Categories.Object.NaturalNumbers.Properties.Parametrized
open import Categories.Category.Cocartesian
import Relation.Binary.Reasoning.Setoid as SetoidR
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_)
``` ```
--> -->
# The category of Setoids can be used as instance for ambient category # The category of Setoids can be used as instance for ambient category
Most of the required properties are already proven in the agda-categories library, we are only left to construct the natural numbers object. Most of the required properties are already proven in the agda-categories library, we are only left to show distributivity.
```agda ```agda
module Category.Ambient.Setoids {} where module Category.Ambient.Setoids {c } where
open _⟶_ using (cong) open M (Setoids c (c ⊔ ))
open _⟶_ using (cong) renaming (to to <_>)
-- equality on setoid functions refl : ∀ (A : Setoid c (c ⊔ )) {a} → Setoid._≈_ A a a
private refl A = IsEquivalence.refl (Setoid.isEquivalence A)
_≋_ : ∀ {A B : Setoid } → A ⟶ B → A ⟶ B → Set
_≋_ {A} {B} f g = Setoid._≈_ (A ⇨ B) f g
≋-sym : ∀ {A B : Setoid } {f g : A ⟶ B} → f ≋ g → g ≋ f
≋-sym {A} {B} {f} {g} = IsEquivalence.sym (Setoid.isEquivalence (A ⇨ B)) {f} {g}
≋-trans : ∀ {A B : Setoid } {f g h : A ⟶ B} → f ≋ g → g ≋ h → f ≋ h
≋-trans {A} {B} {f} {g} {h} = IsEquivalence.trans (Setoid.isEquivalence (A ⇨ B)) {f} {g} {h}
-- we define ourselves, instead of importing it, to avoid lifting the universe levels (builtin Nats are defined on Set₀) setoidDistributive : Distributive (Setoids c (c ⊔ ))
data : Set where Distributive.cartesian setoidDistributive = Setoids-Cartesian
zero : Distributive.cocartesian setoidDistributive = Setoids-Cocartesian {c} {(c ⊔ )}
suc : < IsIso.inv (Distributive.isIsoˡ setoidDistributive {A} {B} {C}) > (x , (inj₁ y)) = inj₁ (x , y)
< IsIso.inv (Distributive.isIsoˡ setoidDistributive {A} {B} {C}) > (x , (inj₂ y)) = inj₂ (x , y)
cong (IsIso.inv (Distributive.isIsoˡ setoidDistributive {A} {B} {C})) {(x , inj₁ y)} {(a , inj₁ b)} (x≈a , inj₁ y≈b) = inj₁ (x≈a , y≈b)
cong (IsIso.inv (Distributive.isIsoˡ setoidDistributive {A} {B} {C})) {(x , inj₂ y)} {(a , inj₂ b)} (x≈a , inj₂ y≈b) = inj₂ (x≈a , y≈b)
Iso.isoˡ (IsIso.iso (Distributive.isIsoˡ setoidDistributive {A} {B} {C})) {inj₁ (a , b)} = inj₁ (refl A , refl B)
Iso.isoˡ (IsIso.iso (Distributive.isIsoˡ setoidDistributive {A} {B} {C})) {inj₂ (a , c)} = inj₂ (refl A , refl C)
Iso.isoʳ (IsIso.iso (Distributive.isIsoˡ setoidDistributive {A} {B} {C})) {a , inj₁ b} = refl A , inj₁ (refl B)
Iso.isoʳ (IsIso.iso (Distributive.isIsoˡ setoidDistributive {A} {B} {C})) {a , inj₂ c} = (refl A) , (inj₂ (refl C))
suc-cong : ∀ {n m} → n ≡ m → suc n ≡ suc m setoidAmbient : Ambient (-suc (c ⊔ )) (c ⊔ ) (c ⊔ )
suc-cong n≡m rewrite n≡m = Eq.refl setoidAmbient = record
{ C = Setoids c (c ⊔ )
suc-inj : ∀ {n m} → suc n ≡ suc m → n ≡ m ; distributive = setoidDistributive
suc-inj Eq.refl = Eq.refl
-eq : Rel
-eq zero zero =
-eq zero (suc m) = ⊥
-eq (suc n) zero = ⊥
-eq (suc n) (suc m) = -eq n m
-setoid : Setoid
-setoid = record { Carrier = ; _≈_ = _≡_ ; isEquivalence = Eq.isEquivalence }
-setoid : Setoid
-setoid = record
{ Carrier =
; _≈_ = _≡_ -- -eq
; isEquivalence = Eq.isEquivalence
} }
zero⟶ : SingletonSetoid {} {} ⟶ -setoid
zero⟶ = record { to = λ _ → zero ; cong = λ x → Eq.refl }
suc⟶ : -setoid ⟶ -setoid
suc⟶ = record { to = suc ; cong = suc-cong }
-universal : ∀ {A : Setoid } → SingletonSetoid {} {} ⟶ A → A ⟶ A → -setoid ⟶ A
-universal {A} z s = record { to = app ; cong = cong' }
where
app : → Setoid.Carrier A
app zero = z ⟨$⟩ tt
app (suc n) = s ⟨$⟩ (app n)
cong' : ∀ {n m : } → n ≡ m → Setoid._≈_ A (app n) (app m)
cong' Eq.refl = IsEquivalence.refl (Setoid.isEquivalence A)
-z-commute : ∀ {A : Setoid } {q : SingletonSetoid {} {} ⟶ A} {f : A ⟶ A} → q ≋ (-universal q f ∘ zero⟶)
-z-commute {A} {q} {f} {lift t} = IsEquivalence.refl (Setoid.isEquivalence A)
-s-commute : ∀ {A : Setoid } {q : SingletonSetoid {} {} ⟶ A} {f : A ⟶ A} → (f ∘ (-universal q f)) ≋ (-universal q f ∘ suc⟶)
-s-commute {A} {q} {f} {n} = IsEquivalence.refl (Setoid.isEquivalence A)
-unique : ∀ {A : Setoid } {q : SingletonSetoid {} {} ⟶ A} {f : A ⟶ A} {u : -setoid ⟶ A} → q ≋ (u ∘ zero⟶) → (f ∘ u) ≋ (u ∘ suc⟶) → u ≋ -universal q f
-unique {A} {q} {f} {u} qz fs {zero} = ≋-sym {SingletonSetoid} {A} {q} {u ∘ zero⟶} qz
-unique {A} {q} {f} {u} qz fs {suc n} = AR.begin
u ⟨$⟩ suc n AR.≈⟨ ≋-sym {-setoid} {A} {f ∘ u} {u ∘ suc⟶} fs ⟩
f ∘ u ⟨$⟩ n AR.≈⟨ cong f (-unique {A} {q} {f} {u} qz fs {n}) ⟩
f ∘ -universal q f ⟨$⟩ n AR.≈⟨ -s-commute {A} {q} {f} {n} ⟩
-universal q f ⟨$⟩ suc n AR.∎
where module AR = SetoidR A
setoidNNO : NNO (Setoids ) SingletonSetoid-
setoidNNO = record
{ N = -setoid
; isNNO = record
{ z = zero⟶
; s = suc⟶
; universal = -universal
; z-commute = λ {A} {q} {f} → -z-commute {A} {q} {f}
; s-commute = λ {A} {q} {f} {n} → -s-commute {A} {q} {f} {n}
; unique = λ {A} {q} {f} {u} qz fs → -unique {A} {q} {f} {u} qz fs
}
}
setoidAmbient : Ambient (-suc )
setoidAmbient = record { C = Setoids ; extensive = Setoids-Extensive ; cartesian = Setoids-Cartesian ; = NNO×CCC⇒PNNO (record { U = Setoids ; cartesianClosed = Setoids-CCC }) (Cocartesian.coproducts (Setoids-Cocartesian {} {})) setoidNNO }
``` ```

View file

@ -96,25 +96,6 @@ Since `Y ⇒ X + Y` is an algebra for the `(X + -)` functor, we can use the fina
(idC +₁ coit g) ∘ f ∎ }) (idC +₁ coit g) ∘ f ∎ })
``` ```
Furthermore if we combine the internal algebra structure of Parametrized NNOs with Lambek's lemma, we get the isomorphism `X × N ≅ X + X × N`.
At the same time the morphism `X × N ⇒ X + X × N` is a coalgebra for the `(Y + \_)`-functor defined above, this gives us another morphism `ι : X × N ⇒ DX` by using the final coalgebras.
<!-- https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIFxcdGltZXMgXFxtYXRoYmJ7Tn0iXSxbMiwwLCJYICsgKFggXFx0aW1lcyBcXG1hdGhiYntOfSkiXSxbMCwxLCJEIFgiXSxbMiwxLCJYICsgRCBYIl0sWzAsMSwi4omFIl0sWzAsMiwiISA9OiBcXGlvdGEiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCJvdXQiXSxbMSwzLCJGIFxcaW90YSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ== -->
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIFxcdGltZXMgXFxtYXRoYmJ7Tn0iXSxbMiwwLCJYICsgKFggXFx0aW1lcyBcXG1hdGhiYntOfSkiXSxbMCwxLCJEIFgiXSxbMiwxLCJYICsgRCBYIl0sWzAsMSwi4omFIl0sWzAsMiwiISA9OiBcXGlvdGEiLDAseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMiwzLCJvdXQiXSxbMSwzLCJGIFxcaW90YSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dXQ==&embed" width="575" height="304" style="border-radius: 8px; border: none;"></iframe>
```agda
nno-iso : X × N ≅ X + X × N
nno-iso = Lambek.lambek (record { ⊥ = PNNO-Algebra cartesianCategory coproducts X N z s ; ⊥-is-initial = PNNO⇒Initial₂ cartesianCategory coproducts X })
ι-coalg : F-Coalgebra-Morphism (record { A = X × N ; α = _≅_.from nno-iso }) (record { A = DX ; α = out })
ι-coalg = ! {A = record { A = X × N ; α = _≅_.from nno-iso }}
ι : X × N ⇒ DX
ι = u ι-coalg
ι-commutes : out ∘ ι ≈ (idC +₁ ι) ∘ _≅_.from nno-iso
ι-commutes = commutes ι-coalg
```
## Delay is a monad ## Delay is a monad
The next step is showing that this actually yields a monad. Some parts for this are already given, we can construct `D X` from `X` and `now : D X ⇒ D X` is the monad unit. The next step is showing that this actually yields a monad. Some parts for this are already given, we can construct `D X` from `X` and `now : D X ⇒ D X` is the monad unit.
@ -254,7 +235,7 @@ and second that `extend f` is the unique morphism satisfying the commutative dia
[ [ (idC +₁ extend' ([ now , f ])) ∘ i₁ , (idC +₁ extend' ([ now , f ])) ∘ h ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out ≈˘⟨ ([]-cong₂ ∘[] +₁∘i₂) ⟩∘⟨refl ⟩ [ [ (idC +₁ extend' ([ now , f ])) ∘ i₁ , (idC +₁ extend' ([ now , f ])) ∘ h ] , i₂ ∘ extend' ([ now , f ]) ] ∘ out ≈˘⟨ ([]-cong₂ ∘[] +₁∘i₂) ⟩∘⟨refl ⟩
[ (idC +₁ extend' ([ now , f ])) ∘ [ i₁ , h ] , (idC +₁ extend' ([ now , f ])) ∘ i₂ ] ∘ out ≈˘⟨ pullˡ ∘[] ⟩ [ (idC +₁ extend' ([ now , f ])) ∘ [ i₁ , h ] , (idC +₁ extend' ([ now , f ])) ∘ i₂ ] ∘ out ≈˘⟨ pullˡ ∘[] ⟩
(idC +₁ extend' ([ now , f ])) ∘ [ [ i₁ , h ] , i₂ ] ∘ out ∎ }))) ⟩∘⟨refl ⟩ (idC +₁ extend' ([ now , f ])) ∘ [ [ i₁ , h ] , i₂ ] ∘ out ∎ }))) ⟩∘⟨refl ⟩
u (Terminal.! (coalgebras Y)) ∘ g ≈⟨ (Terminal.!-unique (coalgebras Y) (record { f = extend' ([ now , i ]) ; commutes = begin u (Terminal.! (coalgebras Y)) ∘ g ≈⟨ (Terminal.!-unique (coalgebras Y) {A = record { A = A (Terminal. (coalgebras (Y + X))) ; α = [ [ i₁ , h ] , i₂ ] ∘ out }} (record { f = extend' ([ now , i ]) ; commutes = begin
out ∘ extend' ([ now , i ]) ≈⟨ extendlaw ([ now , i ]) ⟩ out ∘ extend' ([ now , i ]) ≈⟨ extendlaw ([ now , i ]) ⟩
[ out ∘ [ now , i ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈⟨ ([]-cong₂ ∘[] refl) ⟩∘⟨refl ⟩ [ out ∘ [ now , i ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈⟨ ([]-cong₂ ∘[] refl) ⟩∘⟨refl ⟩
[ [ out ∘ now , out ∘ i ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈⟨ ([]-cong₂ ([]-cong₂ unitlaw (helper i eqi)) refl) ⟩∘⟨refl ⟩ [ [ out ∘ now , out ∘ i ] , i₂ ∘ extend' ([ now , i ]) ] ∘ out ≈⟨ ([]-cong₂ ([]-cong₂ unitlaw (helper i eqi)) refl) ⟩∘⟨refl ⟩

View file

@ -1,159 +0,0 @@
<!--
```agda
open import Level
open import Categories.Functor
open import Category.Ambient using (Ambient)
open import Categories.Monad
open import Categories.Monad.Construction.Kleisli
open import Categories.Monad.Relative renaming (Monad to RMonad)
open import Data.Product using (_,_; Σ; Σ-syntax)
open import Categories.Functor.Algebra
open import Categories.Functor.Coalgebra
open import Categories.Object.Terminal
open import Categories.NaturalTransformation.Core
```
-->
```agda
module Monad.Instance.Delay.Quotienting {o e} (ambient : Ambient o e) where
open Ambient ambient
open import Categories.Diagram.Coequalizer C
open import Monad.Instance.Delay ambient
open F-Coalgebra-Morphism using () renaming (f to u; commutes to coalg-commutes)
```
# Quotienting the delay monad by weak bisimilarity
The coinductive definition of the delay monad yields a 'wrong' kind of equality called *strong bisimilarity*, which differentiates between computations with different execution times, instead we want two computations to be equal, when they both terminate with the same result (or don't terminate at all).
This is called *weak bisimilarity*. The ideas is then to quotient the delay monad with this 'right' kind of equality and show that the result $\tilde{D}$ is again a (strong) monad.
In category theory existence of **coequalizers** corresponds to qoutienting, so we will express the quotiented delay monad via the following coequalizer:
<!-- https://q.uiver.app/#q=WzAsMyxbMCwwLCJEKFggXFx0aW1lcyBcXG1hdGhiYntOfSkiXSxbMiwwLCJEWCJdLFs0LDAsIlxcdGlsZGV7RH1YIl0sWzEsMiwiXFxyaG9fWCJdLFswLDEsIkQgXFxwaV8xIiwyLHsib2Zmc2V0IjoxfV0sWzAsMSwiXFxpb3RhXioiLDAseyJvZmZzZXQiOi0xfV1d -->
<iframe class="quiver-embed" src="https://q.uiver.app/#q=WzAsMyxbMCwwLCJEKFggXFx0aW1lcyBcXG1hdGhiYntOfSkiXSxbMiwwLCJEWCJdLFs0LDAsIlxcdGlsZGV7RH1YIl0sWzEsMiwiXFxyaG9fWCJdLFswLDEsIkQgXFxwaV8xIiwyLHsib2Zmc2V0IjoxfV0sWzAsMSwiXFxpb3RhXioiLDAseyJvZmZzZXQiOi0xfV1d&embed" width="765" height="176" style="border-radius: 8px; border: none;"></iframe>
## Preliminaries
Existence of the coequalizer doesn't suffice, we will need some conditions having to do with preservation of the coequalizer, so let's first define what it means for a coequalizer to be preserved by an endofunctor:
```agda
preserves : ∀ {X Y} {f g : X ⇒ Y} → Endofunctor C → Coequalizer f g → Set (o ⊔ ⊔ e)
preserves {X} {Y} {f} {g} F coeq = IsCoequalizer (Functor.₁ F f) (Functor.₁ F g) (Functor.₁ F (Coequalizer.arr coeq))
```
We will now show that the following conditions are equivalent:
1. For every $X$, the coequalizer is preserved by $D$
2. every $\tilde{D}X$ extends to a search-algebra, so that each $ρ_X$ is a D-algebra morphism
3. for every $X$, $(\tilde{D}X, ρ ∘ now : X → \tilde{D}X)$ is a stable free elgot algebra on X, $ρ_X$ is a D-algebra morphism and $ρ_X = ((ρ_X ∘ now + id) ∘ out)^\#$
4. $\tilde{D}$ extends to a strong monad, so that $ρ$ is a strong monad morphism
```agda
module _ (D : DelayM) where
open DelayM D renaming (functor to D-Functor; monad to D-Monad; kleisli to D-Kleisli)
open Functor D-Functor using () renaming (F₁ to D₁; homomorphism to D-homomorphism; F-resp-≈ to D-resp-≈; identity to D-identity)
open RMonad D-Kleisli using (extend; extend-≈) renaming (assoc to k-assoc; identityʳ to k-identityʳ; identityˡ to k-identityˡ)
open Monad D-Monad using () renaming (assoc to M-assoc; identityʳ to M-identityʳ)
open HomReasoning
open M C
open MR C
open Equiv
module Quotiented (coeqs : ∀ X → Coequalizer (extend (ι {X})) (D₁ π₁)) where
Ď₀ : Obj → Obj
Ď₀ X = Coequalizer.obj (coeqs X)
ρ : ∀ {X} → D₀ X ⇒ Ď₀ X
ρ {X} = Coequalizer.arr (coeqs X)
ρ-epi : ∀ {X} → Epi (ρ {X})
ρ-epi {X} = Coequalizer⇒Epi (coeqs X)
ρ▷ : ∀ {X} → ρ ∘ ▷ ≈ ρ {X}
ρ▷ {X} = sym (begin
ρ ≈⟨ introʳ intro-helper ⟩
ρ ∘ D₁ π₁ ∘ D₁ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈⟨ pullˡ (sym equality) ⟩
(ρ ∘ extend ι) ∘ D₁ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈⟨ pullʳ (sym k-assoc) ⟩
ρ ∘ extend (extend ι ∘ now ∘ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩) ≈⟨ (refl⟩∘⟨ extend-≈ (pullˡ k-identityʳ)) ⟩
ρ ∘ extend (ι ∘ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩) ≈⟨ (refl⟩∘⟨ extend-≈ helper) ⟩
ρ ∘ extend (▷ ∘ now) ≈⟨ (refl⟩∘⟨ sym (▷∘extendʳ now)) ⟩
ρ ∘ extend now ∘ ▷ ≈⟨ elim-center k-identityˡ ⟩
ρ ∘ ▷ ∎)
where
open Coequalizer (coeqs X) using (equality; coequalize; id-coequalize; coequalize-resp-≈) renaming (universal to coeq-universal; unique to coeq-unique; unique to coeq-unique)
intro-helper : D₁ π₁ ∘ D₁ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈ idC
intro-helper = sym D-homomorphism ○ D-resp-≈ project₁ ○ D-identity
helper : ι ∘ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈ ▷ ∘ now
helper = begin
ι ∘ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈⟨ introˡ (_≅_.isoˡ out-≅) ⟩
(out⁻¹ ∘ out) ∘ ι ∘ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈⟨ pullʳ (pullˡ (coalg-commutes ((Terminal.! (coalgebras X) {A = record { A = X × N ; α = _≅_.from nno-iso }})))) ⟩
out⁻¹ ∘ ((idC +₁ ι) ∘ _≅_.from nno-iso) ∘ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ sym (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identity² refl)) ⟩
out⁻¹ ∘ ((idC +₁ ι) ∘ _≅_.from nno-iso) ∘ (idC ⁂ s) ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ sym inject₂ ⟩∘⟨refl) ⟩
out⁻¹ ∘ ((idC +₁ ι) ∘ _≅_.from nno-iso) ∘ (_≅_.to nno-iso ∘ i₂) ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ ≈⟨ (refl⟩∘⟨ (pullʳ (pullˡ (cancelˡ (_≅_.isoʳ nno-iso))))) ⟩
out⁻¹ ∘ (idC +₁ ι) ∘ i₂ ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ ≈⟨ (refl⟩∘⟨ pullˡ +₁∘i₂) ⟩
out⁻¹ ∘ (i₂ ∘ ι) ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ sym inject₁) ⟩
out⁻¹ ∘ (i₂ ∘ ι) ∘ _≅_.to nno-iso ∘ i₁ ≈⟨ (refl⟩∘⟨ intro-center (_≅_.isoˡ out-≅) ⟩∘⟨refl) ⟩
out⁻¹ ∘ (i₂ ∘ (out⁻¹ ∘ out) ∘ ι) ∘ _≅_.to nno-iso ∘ i₁ ≈⟨ (refl⟩∘⟨ (refl⟩∘⟨ pullʳ (coalg-commutes ((Terminal.! (coalgebras X) {A = record { A = X × N ; α = _≅_.from nno-iso }})))) ⟩∘⟨refl) ⟩
out⁻¹ ∘ (i₂ ∘ out⁻¹ ∘ (idC +₁ ι) ∘ _≅_.from nno-iso) ∘ _≅_.to nno-iso ∘ i₁ ≈⟨ (refl⟩∘⟨ (pullʳ (pullˡ (pullʳ (cancelʳ (_≅_.isoʳ nno-iso)))))) ⟩
out⁻¹ ∘ i₂ ∘ (out⁻¹ ∘ (idC +₁ ι)) ∘ i₁ ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ pullʳ +₁∘i₁) ⟩
out⁻¹ ∘ i₂ ∘ out⁻¹ ∘ i₁ ∘ idC ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ identityʳ) ⟩
out⁻¹ ∘ i₂ ∘ out⁻¹ ∘ i₁ ≈⟨ ((refl⟩∘⟨ sym-assoc) ○ assoc²'') ⟩
▷ ∘ now ∎
Ď-Functor : Endofunctor C
Ď-Functor = record
{ F₀ = Ď₀
; F₁ = F₁'
; identity = λ {X} → Coequalizer.coequalize-resp-≈ (coeqs X) (elimʳ D-identity) ○ sym (Coequalizer.id-coequalize (coeqs X))
; homomorphism = λ {X} {Y} {Z} {f} {g} → sym (Coequalizer.unique (coeqs X) (sym (begin
(F₁' g ∘ F₁' f) ∘ ρ ≈⟨ pullʳ (sym (Coequalizer.universal (coeqs X))) ⟩
F₁' g ∘ ρ ∘ D₁ f ≈⟨ pullˡ (sym (Coequalizer.universal (coeqs Y))) ⟩
(ρ ∘ D₁ g) ∘ D₁ f ≈⟨ pullʳ (sym D-homomorphism) ⟩
ρ ∘ D₁ (g ∘ f) ∎)))
; F-resp-≈ = λ {X} {Y} {f} {g} eq → Coequalizer.coequalize-resp-≈ (coeqs X) (refl⟩∘⟨ (D-resp-≈ eq))
}
where
F₁' : ∀ {X} {Y} (f : X ⇒ Y) → Ď₀ X ⇒ Ď₀ Y
F₁' {X} {Y} f = coequalize {h = ρ ∘ D₁ f} (begin
(ρ ∘ D₁ f) ∘ extend ι ≈⟨ pullʳ (sym k-assoc) ⟩
ρ ∘ extend (extend (now ∘ f) ∘ ι) ≈⟨ refl⟩∘⟨ (extend-≈ (sym (Terminal.!-unique (coalgebras Y) (record { f = extend (now ∘ f) ∘ ι ; commutes = begin
out ∘ extend (now ∘ f) ∘ ι ≈⟨ pullˡ (extendlaw (now ∘ f)) ⟩
([ out ∘ now ∘ f , i₂ ∘ D₁ f ] ∘ out) ∘ ι ≈⟨ pullʳ (coalg-commutes (Terminal.! (coalgebras X) {A = record { A = X × N ; α = _≅_.from nno-iso }})) ⟩
[ out ∘ now ∘ f , i₂ ∘ D₁ f ] ∘ (idC +₁ ι) ∘ _≅_.from nno-iso ≈⟨ (([]-cong₂ (pullˡ unitlaw) refl) ⟩∘⟨refl) ⟩
(f +₁ D₁ f) ∘ (idC +₁ ι) ∘ _≅_.from nno-iso ≈⟨ pullˡ +₁∘+₁ ⟩
(f ∘ idC +₁ D₁ f ∘ ι) ∘ _≅_.from nno-iso ≈⟨ ((+₁-cong₂ id-comm (sym identityʳ)) ⟩∘⟨refl) ⟩
(idC ∘ f +₁ (D₁ f ∘ ι) ∘ idC) ∘ _≅_.from nno-iso ≈⟨ sym (pullˡ +₁∘+₁) ⟩
(idC +₁ extend (now ∘ f) ∘ ι) ∘ (f +₁ idC) ∘ _≅_.from nno-iso ∎ })))) ⟩
ρ ∘ extend (u (Terminal.! (coalgebras Y) {A = record { A = X × N ; α = (f +₁ idC) ∘ _≅_.from nno-iso }})) ≈⟨ (refl⟩∘⟨ (extend-≈ (Terminal.!-unique (coalgebras Y) (record { f = ι ∘ (f ⁂ idC) ; commutes = begin
out ∘ ι ∘ (f ⁂ idC) ≈⟨ pullˡ (coalg-commutes (Terminal.! (coalgebras Y) {A = record { A = Y × N ; α = _≅_.from nno-iso }})) ⟩
((idC +₁ ι) ∘ _≅_.from nno-iso) ∘ (f ⁂ idC) ≈⟨ assoc ⟩
(idC +₁ ι) ∘ _≅_.from nno-iso ∘ (f ⁂ idC) ≈⟨ (refl⟩∘⟨ (introʳ (_≅_.isoˡ nno-iso))) ⟩
(idC +₁ ι) ∘ (_≅_.from nno-iso ∘ (f ⁂ idC)) ∘ [ ⟨ idC , z ∘ Terminal.! terminal ⟩ , idC ⁂ s ] ∘ _≅_.from nno-iso ≈⟨ (refl⟩∘⟨ pullʳ (pullˡ ∘[])) ⟩
(idC +₁ ι) ∘ _≅_.from nno-iso ∘ [ (f ⁂ idC) ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ , (f ⁂ idC) ∘ (idC ⁂ s) ] ∘ _≅_.from nno-iso ≈⟨ (refl⟩∘⟨ (refl⟩∘⟨ (([]-cong₂ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityʳ identityˡ) (⁂∘⁂ ○ ⁂-cong₂ identityʳ identityˡ)) ⟩∘⟨refl))) ⟩
(idC +₁ ι) ∘ _≅_.from nno-iso ∘ [ ⟨ f , z ∘ Terminal.! terminal ⟩ , (f ⁂ s) ] ∘ _≅_.from nno-iso ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ []-cong₂ (⟨⟩-cong₂ refl (refl⟩∘⟨ Terminal.!-unique terminal (Terminal.! terminal ∘ f))) refl ⟩∘⟨refl) ⟩
(idC +₁ ι) ∘ _≅_.from nno-iso ∘ [ ⟨ f , z ∘ Terminal.! terminal ∘ f ⟩ , (f ⁂ s) ] ∘ _≅_.from nno-iso ≈⟨ sym (refl⟩∘⟨ refl⟩∘⟨ []-cong₂ (⟨⟩∘ ○ ⟨⟩-cong₂ identityˡ assoc) (⁂∘⁂ ○ ⁂-cong₂ identityˡ identityʳ) ⟩∘⟨refl) ⟩
(idC +₁ ι) ∘ _≅_.from nno-iso ∘ [ ⟨ idC , z ∘ Terminal.! terminal ⟩ ∘ f , (idC ⁂ s) ∘ (f ⁂ idC) ] ∘ _≅_.from nno-iso ≈⟨ sym (refl⟩∘⟨ (pullʳ (pullˡ []∘+₁))) ⟩
(idC +₁ ι) ∘ (_≅_.from nno-iso ∘ [ ⟨ idC , z ∘ Terminal.! terminal ⟩ , idC ⁂ s ]) ∘ (f +₁ (f ⁂ idC)) ∘ _≅_.from nno-iso ≈⟨ sym (refl⟩∘⟨ introˡ (_≅_.isoʳ nno-iso)) ⟩
(idC +₁ ι) ∘ (f +₁ (f ⁂ idC)) ∘ _≅_.from nno-iso ≈⟨ pullˡ (+₁∘+₁ ○ +₁-cong₂ identityˡ refl) ⟩
(f +₁ ι ∘ (f ⁂ idC)) ∘ _≅_.from nno-iso ≈⟨ sym (pullˡ (+₁∘+₁ ○ +₁-cong₂ identityˡ identityʳ)) ⟩
(idC +₁ ι ∘ (f ⁂ idC)) ∘ (f +₁ idC) ∘ _≅_.from nno-iso ∎ })))) ⟩
ρ ∘ extend (ι ∘ (f ⁂ idC)) ≈⟨ (refl⟩∘⟨ extend-≈ (pushˡ (sym k-identityʳ))) ⟩
ρ ∘ extend (extend ι ∘ now ∘ (f ⁂ idC)) ≈⟨ pushʳ k-assoc ⟩
(ρ ∘ extend ι) ∘ D₁ (f ⁂ idC) ≈⟨ pushˡ (Coequalizer.equality (coeqs Y)) ⟩
ρ ∘ D₁ π₁ ∘ D₁ (f ⁂ idC) ≈⟨ refl⟩∘⟨ sym D-homomorphism ⟩
ρ ∘ D₁ (π₁ ∘ (f ⁂ idC)) ≈⟨ (refl⟩∘⟨ (D-resp-≈ project₁)) ⟩
ρ ∘ D₁ (f ∘ π₁) ≈⟨ pushʳ D-homomorphism ⟩
(ρ ∘ D₁ f) ∘ D₁ π₁ ∎)
where
open Coequalizer (coeqs X) using (coequalize; equality) renaming (universal to coeq-universal)
ρ-natural : NaturalTransformation D-Functor Ď-Functor
ρ-natural = ntHelper (record
{ η = λ X → ρ {X}
; commute = λ {X} {Y} f → Coequalizer.universal (coeqs X)
})
```

View file

@ -100,7 +100,7 @@ module Monad.Instance.Delay.Strong {o e} (ambient : Ambient o e) (D : De
out ∘ extend (now ∘ π₂) ∘ τ _ ∘ idC ≈⟨ pullˡ diag₃ ⟩ out ∘ extend (now ∘ π₂) ∘ τ _ ∘ idC ≈⟨ pullˡ diag₃ ⟩
((π₂ +₁ extend (now ∘ π₂)) ∘ out) ∘ τ _ ∘ idC ≈⟨ pullʳ (pullˡ (diag₂ (Terminal. terminal , X))) ⟩ ((π₂ +₁ extend (now ∘ π₂)) ∘ out) ∘ τ _ ∘ idC ≈⟨ pullʳ (pullˡ (diag₂ (Terminal. terminal , X))) ⟩
(π₂ +₁ extend (now ∘ π₂)) ∘ ((idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out)) ∘ idC ≈⟨ refl⟩∘⟨ (pullʳ (assoc ○ sym diag₁)) ⟩ (π₂ +₁ extend (now ∘ π₂)) ∘ ((idC +₁ τ _) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out)) ∘ idC ≈⟨ refl⟩∘⟨ (pullʳ (assoc ○ sym diag₁)) ⟩
(π₂ +₁ extend (now ∘ π₂)) ∘ (idC +₁ τ _) ∘ (⟨ Terminal.! terminal , idC ⟩ +₁ idC) ∘ (π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (pullˡ (+₁∘+₁ ○ +₁-cong₂ (_≅_.isoˡ ×A≅A) identity² ○ CC.+-unique ((identity² ⟩∘⟨refl) ○ id-comm-sym) ((identity² ⟩∘⟨refl) ○ id-comm-sym)) ) ⟩ (π₂ +₁ extend (now ∘ π₂)) ∘ (idC +₁ τ _) ∘ (⟨ Terminal.! terminal , idC ⟩ +₁ idC) ∘ (π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ refl⟩∘⟨ refl⟩∘⟨ (pullˡ (+₁∘+₁ ○ +₁-cong₂ (_≅_.isoˡ ×A≅A) identity² ○ []-unique ((identity² ⟩∘⟨refl) ○ id-comm-sym) ((identity² ⟩∘⟨refl) ○ id-comm-sym)) ) ⟩
(π₂ +₁ extend (now ∘ π₂)) ∘ (idC +₁ τ _) ∘ (idC ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ pullˡ +₁∘+₁ ⟩ (π₂ +₁ extend (now ∘ π₂)) ∘ (idC +₁ τ _) ∘ (idC ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ pullˡ +₁∘+₁ ⟩
(π₂ ∘ idC +₁ extend (now ∘ π₂) ∘ τ _) ∘ (idC ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ (+₁-cong₂ id-comm refl) ⟩∘⟨refl ⟩ (π₂ ∘ idC +₁ extend (now ∘ π₂) ∘ τ _) ∘ (idC ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ (+₁-cong₂ id-comm refl) ⟩∘⟨refl ⟩
(idC ∘ π₂ +₁ extend (now ∘ π₂) ∘ τ _) ∘ (idC ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈˘⟨ pullˡ +₁∘+₁ ⟩ (idC ∘ π₂ +₁ extend (now ∘ π₂) ∘ τ _) ∘ (idC ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈˘⟨ pullˡ +₁∘+₁ ⟩
@ -121,7 +121,7 @@ module Monad.Instance.Delay.Strong {o e} (ambient : Ambient o e) (D : De
diag₁ = begin diag₁ = begin
(⟨ Terminal.! terminal , idC ⟩ +₁ idC) ∘ (π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ pullˡ +₁∘+₁ ⟩ (⟨ Terminal.! terminal , idC ⟩ +₁ idC) ∘ (π₂ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ pullˡ +₁∘+₁ ⟩
(⟨ Terminal.! terminal , idC ⟩ ∘ π₂ +₁ idC ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ +₁-cong₂ (_≅_.isoˡ ×A≅A) identity² ⟩∘⟨ (refl⟩∘⟨ sym identityʳ) ⟩ (⟨ Terminal.! terminal , idC ⟩ ∘ π₂ +₁ idC ∘ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ≈⟨ +₁-cong₂ (_≅_.isoˡ ×A≅A) identity² ⟩∘⟨ (refl⟩∘⟨ sym identityʳ) ⟩
(idC +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ∘ idC ≈⟨ elimˡ (CC.+-unique id-comm-sym id-comm-sym) ⟩ (idC +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ out) ∘ idC ≈⟨ elimˡ ([]-unique id-comm-sym id-comm-sym) ⟩
distributeˡ⁻¹ ∘ (idC ⁂ out) ∘ idC ∎ distributeˡ⁻¹ ∘ (idC ⁂ out) ∘ idC ∎
diag₂ = τ-law diag₂ = τ-law
diag₃ : out {X} ∘ extend (now ∘ π₂ {A = Terminal. terminal} {B = X}) ≈ (π₂ +₁ extend (now ∘ π₂)) ∘ out diag₃ : out {X} ∘ extend (now ∘ π₂ {A = Terminal. terminal} {B = X}) ≈ (π₂ +₁ extend (now ∘ π₂)) ∘ out

View file

@ -375,6 +375,24 @@ module DelayMonad where
open DelayMonad open DelayMonad
-- custom definition of natural numbers together with the setoid on with propositional equality
module nat {} where
data : Set where
zero :
suc :
-setoid : Setoid
-setoid = record
{ Carrier =
; _≈_ = _≡_
; isEquivalence = Eq.isEquivalence
}
suc-inj : ∀ {n m} → suc n ≡ suc m → n ≡ m
suc-inj Eq.refl = Eq.refl
open nat
module extra {A : Setoid c (c ⊔ )} where module extra {A : Setoid c (c ⊔ )} where
≲→≈ : {x y : Delay A } → [ A ][ x ≲ y ] → [ A ][ x ≈ y ] ≲→≈ : {x y : Delay A } → [ A ][ x ≲ y ] → [ A ][ x ≈ y ]
≲→≈′ : {x y : Delay A } → [ A ][ x ≲′ y ] → [ A ][ x ≈′ y ] ≲→≈′ : {x y : Delay A } → [ A ][ x ≲′ y ] → [ A ][ x ≈′ y ]

View file

@ -30,17 +30,18 @@ open import Categories.Category.Instance.Properties.Setoids.CCC using (Setoids-C
module Monad.Instance.Setoids.K { : Level} where module Monad.Instance.Setoids.K { : Level} where
open _⟶_ using (cong) open _⟶_ using (cong)
open import Category.Ambient.Setoids open import Category.Ambient.Setoids
open Ambient (setoidAmbient {}) using (cocartesian; distributive) open Ambient (setoidAmbient {} {}) using (cocartesian; distributive)
open import Monad.Instance.Setoids.Delay {} {} open import Monad.Instance.Setoids.Delay {} {}
open import Monad.Instance.K (setoidAmbient {}) open import Monad.Instance.K (setoidAmbient {} {})
open import Algebra.Elgot cocartesian open import Algebra.Elgot cocartesian
open import Algebra.Elgot.Free cocartesian open import Algebra.Elgot.Free cocartesian
open import Algebra.Elgot.Stable distributive open import Algebra.Elgot.Stable distributive
open import Category.Construction.ElgotAlgebras {C = Setoids } cocartesian open import Category.Construction.ElgotAlgebras {C = Setoids } cocartesian
open import Monad.PreElgot (setoidAmbient {}) open import Monad.PreElgot (setoidAmbient {} {})
open Bisimilarity renaming (_≈_ to [_][_≈_]; _≈_ to [_][_≈_]; __ to [_][__]; __ to [_][__]; _↓_ to [_][_↓_]) open Bisimilarity renaming (_≈_ to [_][_≈_]; _≈_ to [_][_≈_]; __ to [_][__]; __ to [_][__]; _↓_ to [_][_↓_])
open DelayMonad open DelayMonad
open extra open extra
open nat
open Setoid using () renaming (Carrier to _; _≈_ to [_][_≡_]) open Setoid using () renaming (Carrier to _; _≈_ to [_][_≡_])
open eq using () renaming (refl to ≡-refl; sym to ≡-sym; trans to ≡-trans) open eq using () renaming (refl to ≡-refl; sym to ≡-sym; trans to ≡-trans)
@ -297,6 +298,14 @@ module Monad.Instance.Setoids.K { : Level} where
delay-lift' = record { to = < helper # > ; cong = helper#≈-cong } delay-lift' = record { to = < helper # > ; cong = helper#≈-cong }
-- interesting note:
-- the following definition prevents more general universe levels, i.e. we would like to parametrize this module by two levels c and , one for carriers and one for proofs.
-- but adopting this approach would force us to talk about setoids of type Setoid (c ⊔ ), this does not work with the definition below,
-- since propositional equality lives on the same level as values, this means the type below would have to look like:
-- ‖_‖ : Setoid c (c ⊔ ) → Setoid c c
-- this in turn does not play together nicely with later definition.
-- discretize a setoid -- discretize a setoid
‖_‖ : Setoid → Setoid ‖_‖ : Setoid → Setoid
_ ‖ X ‖ = X _ ‖ X ‖ = X

View file

@ -35,12 +35,6 @@ open import Monad.Instance.Delay.Strong
open import Monad.Instance.Delay.Commutative open import Monad.Instance.Delay.Commutative
``` ```
The next step is to quotient the delay monad by weak bisimilarity, but this quotiented structure is not monadic, so we postulate conditions under which it extends to a monad.
```agda
open import Monad.Instance.Delay.Quotienting
```
### Monad K ### Monad K
The goal of this last section is to formalize an equational lifting monad **K** that generalizes both the maybe monad and the delay monad. The goal of this last section is to formalize an equational lifting monad **K** that generalizes both the maybe monad and the delay monad.
@ -103,7 +97,7 @@ open import Monad.Instance.K.StrongPreElgot
### A case study on setoids ### A case study on setoids
Lastly we do a case study on the category of setoids. Lastly we do a case study on the category of setoids.
First we look at the (quotiented delay monad) on setoids: First we look at the (quotiented) delay monad on setoids:
```agda ```agda
open import Monad.Instance.Setoids.Delay open import Monad.Instance.Setoids.Delay

View file

@ -1,75 +0,0 @@
{-# OPTIONS --guardedness #-}
-- Take this example as motivation:
-- https://stackoverflow.com/questions/21808186/agda-reading-a-line-of-standard-input-as-a-string-instead-of-a-costring
open import Level
open import Agda.Builtin.Coinduction
module thesis.motivation where
module old-delay where
private
variable
a : Level
data _⊥ (A : Set a) : Set a where
now : A A
later : (A ) A
never : {A : Set a} A
never = later ( never)
module ReverseInput where
open import Data.Char
open import Data.Nat
open import Data.List using (List; []; _∷_)
open import Data.String
open import Data.Unit.Polymorphic
open import Codata.Musical.Costring
open import Codata.Musical.Colist using ([]; _∷_)
-- open import IO using (IO; seq; bind; return; Main; run; putStrLn)
open import IO.Primitive
open import IO.Primitive.Infinite using (getContents)
open import Agda.Builtin.IO using ()
open old-delay
-- IDEA: start in haskell, then motivate in agda and define delay type
-- next talk about bisimilarity.
-- idea for slide title: dlrowolleh.hs and dlrowolleh.agda
private
variable
a : Level
-- reverse : Costring → String ⊥
-- reverse = go []
-- where
-- go : List Char → Costring → String ⊥
-- go acc [] = now (fromList acc)
-- go acc (x ∷ xs) = later (♯ go (x ∷ acc) (♭ xs))
-- putStrLn⊥ : String ⊥ → IO {a}
-- putStrLn⊥ (now s) = putStrLn s
-- putStrLn⊥ (later s) = seq (♯ return tt) (♯ putStrLn⊥ (♭ s))
-- main : Main
-- main = run (bind (♯ {! getContents !}) {! !}) --(λ c → ♯ putStrLn⊥ (reverse c)))
-- NOTE: This is not very understandable... Better stick to the outdated syntax
module delay where
mutual
data _⊥ (A : Set) : Set where
now : A A
later : A ⊥' A
record _⊥' (A : Set) : Set where
coinductive
field
force : A
open _⊥'
mutual
never : {A : Set} A
never = later never'
never' : {A : Set} A ⊥'
force never' = never

47
thesis/agda/setoids.agda Normal file
View file

@ -0,0 +1,47 @@
module Foo where
open import Level
record _×_ {a b} (A : Set a) (B : Set b) : Set (a b) where
constructor _,_
field
fst : A
snd : B
open _×_
<_,_> : {a b c} {A : Set a} {B : Set b} {C : Set c}
(A B) (A C) A (B × C)
< f , g > x = (f x , g x)
record {l} : Set l where
constructor tt
! : {l} {X : Set l} X {l}
! _ = tt
data _+_ {a b} (A : Set a) (B : Set b) : Set (a b) where
i₁ : A A + B
i₂ : B A + B
[_,_] : {a b c} {A : Set a} {B : Set b} {C : Set c}
(A C) (B C) (A + B) C
[ f , g ] (i₁ x) = f x
[ f , g ] (i₂ x) = g x
data {l} : Set l where
¡ : {l} {X : Set l} {l} X
¡ ()
distributeˡ⁻¹ : {a b c} {A : Set a} {B : Set b} {C : Set c} (A × B) + (A × C) A × (B + C)
distributeˡ⁻¹ (i₁ (x , y)) = (x , i₁ y)
distributeˡ⁻¹ (i₂ (x , y)) = (x , i₂ y)
distributeˡ : {a b c} {A : Set a} {B : Set b} {C : Set c} A × (B + C) (A × B) + (A × C)
distributeˡ (x , i₁ y) = i₁ (x , y)
distributeˡ (x , i₂ y) = i₂ (x , y)
curry : {a b c} {A : Set a} {B : Set b} {C : Set c} (C × A B) C A B
curry f x y = f (x , y)
eval : {a b} {A : Set a} {B : Set b} ((A B) × A) B
eval (f , x) = f x

View file

@ -239,4 +239,11 @@
timestamp = {Mon, 13 Aug 2018 16:47:19 +0200}, timestamp = {Mon, 13 Aug 2018 16:47:19 +0200},
biburl = {https://dblp.org/rec/journals/corr/GoncharovSR14.bib}, biburl = {https://dblp.org/rec/journals/corr/GoncharovSR14.bib},
bibsource = {dblp computer science bibliography, https://dblp.org} bibsource = {dblp computer science bibliography, https://dblp.org}
}
@online{nad-delay,
author = {Nils Anders Danielsson},
title = {The delay monad, defined coinductively},
url = {https://www.cse.chalmers.se/~nad/listings/delay-monad/Delay-monad.html},
urldate = {2024-15-02}
} }

View file

@ -10,7 +10,8 @@
breaklines=true, breaklines=true,
encoding=utf8, encoding=utf8,
fontsize=\small, fontsize=\small,
frame=lines frame=lines,
autogobble
} }
\usepackage[dvipsnames]{xcolor} % Coloured text etc. \usepackage[dvipsnames]{xcolor} % Coloured text etc.
\usepackage{amssymb} \usepackage{amssymb}

View file

@ -18,9 +18,88 @@ Morphisms between setoids are functions that respect the equivalence relation:
Setoids and setoid morphisms form a category that we call $\setoids$. Setoids and setoid morphisms form a category that we call $\setoids$.
\improvement[inline]{Talk about equality between setoid morphisms}
\improvement[inline]{Text is not good} \improvement[inline]{Text is not good}
\todo[inline]{sketch the proof that setoids is CCC and cocartesian}
\begin{lemma}
$\setoids$ is a distributive category.
\end{lemma}
\begin{proof}
To show that $\setoids$ is (co-)cartesian we will give the respective datatypes and unique morphisms, this also introduces notation we will use for the rest of the chapter. We will not include the proofs that the morphisms are setoid morphisms, these can be looked up in the agda standard library.
\begin{itemize}
\item \textbf{Products}:
\begin{minted}{agda}
record _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
constructor _,_
field
fst : A
snd : B
<_,_> : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
→ (A → B) → (A → C) → A → (B × C)
< f , g > x = (f x , g x)
\end{minted}
\item \textbf{Terminal Object}:
\begin{minted}{agda}
record {l} : Set l where
constructor tt
! : ∀ {l} {X : Set l} → X → {l}
! _ = tt
\end{minted}
\item \textbf{Coproducts}:
\begin{minted}{agda}
data _+_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
i₁ : A → A + B
i₂ : B → A + B
[_,_] : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
→ (A → C) → (B → C) → (A + B) → C
[ f , g ] (i₁ x) = f x
[ f , g ] (i₂ x) = g x
\end{minted}
\item \textbf{Initial Object}:
\begin{minted}{agda}
data ⊥ {l} : Set l where
¡ : ∀ {l} {X : Set l} → ⊥ {l} → X
¡ ()
\end{minted}
\end{itemize}
Lastly we need to show that the canonical distributivity morphism is an iso. Recall that the canonical distributive morphism is defined as $dstl^{-1} = [ id \times i_1 , id \times i_2 ] : A \times B + A \times C \rightarrow A \times (B + C)$. This corresponds to the following definition using pattern matching:
\begin{minted}{agda}
distributeˡ⁻¹ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
→ (A × B) + (A × C) → A × (B + C)
distributeˡ⁻¹ (i₁ (x , y)) = (x , i₁ y)
distributeˡ⁻¹ (i₂ (x , y)) = (x , i₂ y)
\end{minted}
The inverse can be defined similarly:
\begin{minted}{agda}
distributeˡ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
→ A × (B + C) → (A × B) + (A × C)
distributeˡ (x , i₁ y) = i₁ (x , y)
distributeˡ (x , i₂ y) = i₂ (x , y)
\end{minted}
Then these functions are inverse by definition and it is easy to show that they are setoid morphisms.
\end{proof}
\begin{lemma}
$\setoids$ is cartesian closed.
\end{lemma}
\begin{proof}
We have already shown that $\setoids$ is cartesian, we need to show that given two setoids $(A, =^A), (B, =^B)$ we can construct an exponential object.
Indeed take the function space setoid $(A \rightarrow B, \doteq)$ where $\doteq$ is pointwise equality of setoid morphisms i.e. $f , g : A \rightarrow B$ are pointwise equal $f \doteq g$ \textit{iff} $f x =^B g x$ for any $x : A$. $curry$ and $eval$ are then defined as usual:
\begin{minted}{agda}
curry : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}
→ (C × A → B) → C → A → B
curry f x y = f (x , y)
eval : ∀ {a b} {A : Set a} {B : Set b} → ((A → B) × A) → B
eval (f , x) = f x
\end{minted}
\end{proof}
\section{Quotienting the Delay Monad} \section{Quotienting the Delay Monad}
% TODO merge this into introduction % TODO merge this into introduction
@ -31,14 +110,14 @@ Setoids and setoid morphisms form a category that we call $\setoids$.
Originally the delay monad has been introduced as a coinductive datatype with two constructors, in pseudo Agda-like code this would look something like: Originally the delay monad has been introduced as a coinductive datatype with two constructors, in pseudo Agda-like code this would look something like:
\begin{minted}{agda} \begin{minted}{agda}
codata (A : Set) : Set where codata (A : Set) : Set where
now : A → Delay A now : A → Delay A
later : Delay A → Delay A later : Delay A → Delay A
\end{minted} \end{minted}
This style is sometimes called \textit{positively coinductive} and is nowadays advised against in the manuals of both Agda and Coq\todo{cite}. Instead one is advised to use coinductive records, we will heed this advice and use the following representation of the delay monad in Agda: This style is sometimes called \textit{positively coinductive} and is nowadays advised against in the manuals of both Agda and Coq\todo{cite}. Instead one is advised to use coinductive records, we will heed this advice and use the following representation of the delay monad in Agda:\change{rephrase}
\todo[inline]{cite https://www.cse.chalmers.se/~nad/listings/delay-monad/Delay-monad.html somehow} \todo[inline]{cite https://www.cse.chalmers.se/~nad/listings/delay-monad/Delay-monad.html somehow}
\cite{nad-delay}
\begin{minted}{agda} \begin{minted}{agda}
mutual mutual
data Delay (A : Set) : Set where data Delay (A : Set) : Set where