mirror of
https://git8.cs.fau.de/theses/bsc-leon-vatthauer.git
synced 2024-05-31 07:28:34 +02:00
Compare commits
4 commits
ac3b80c4f6
...
11107c67b8
Author | SHA1 | Date | |
---|---|---|---|
11107c67b8 | |||
7cf428e05c | |||
af3b6ee7c3 | |||
fae9a310a4 |
2 changed files with 104 additions and 22 deletions
|
@ -139,7 +139,6 @@ Here we give a different Characterization and show that it is equal.
|
|||
[ (idC +₁ (i₁ +₁ idC)) ∘ i₁ ∘ h , (idC +₁ (i₁ +₁ idC)) ∘ [ (h +₁ i₁) , i₂ ∘ i₂ ] ∘ f ] ≈˘⟨ ∘[] ⟩
|
||||
(idC +₁ (i₁ +₁ idC)) ∘ [ i₁ ∘ h , [ (h +₁ i₁) , i₂ ∘ i₂ ] ∘ f ] ∎
|
||||
|
||||
-- TODO Proposition 41
|
||||
#-Diamond : ∀ {X} (f : X ⇒ A + (X + X)) → ((idC +₁ [ idC , idC ]) ∘ f)# ≈ ([ i₁ , ((idC +₁ [ idC , idC ]) ∘ f) # +₁ idC ] ∘ f) #
|
||||
#-Diamond {X} f = begin
|
||||
g # ≈⟨ introʳ inject₂ ⟩
|
||||
|
@ -153,7 +152,8 @@ Here we give a different Characterization and show that it is equal.
|
|||
[ i₁ , [ [ (idC +₁ i₁) ∘ i₁ , (i₂ ∘ i₂) ∘ i₁ ] ∘ g , [ (idC +₁ i₁) ∘ i₂ , (i₂ ∘ i₂) ∘ idC ] ∘ f ] ] # ∘ i₂ ∘ i₂ ≈⟨ ((#-resp-≈ ([]-cong₂ refl ([]-cong₂ (([]-cong₂ (+₁∘i₁ ○ identityʳ) assoc) ⟩∘⟨refl) (([]-cong₂ +₁∘i₂ identityʳ) ⟩∘⟨refl)))) ⟩∘⟨refl) ⟩
|
||||
[ i₁ , [ [ i₁ , i₂ ∘ i₂ ∘ i₁ ] ∘ g , [ i₂ ∘ i₁ , i₂ ∘ i₂ ] ∘ f ] ] # ∘ i₂ ∘ i₂ ≈˘⟨ ((#-resp-≈ ([]-cong₂ refl ([]-cong₂ (pullˡ ([]∘+₁ ○ []-cong₂ identityʳ refl)) (∘[] ⟩∘⟨refl)))) ⟩∘⟨refl) ⟩
|
||||
[ i₁ , [ [ i₁ , i₂ ] ∘ (idC +₁ i₂ ∘ i₁) ∘ g , (i₂ ∘ [ i₁ , i₂ ]) ∘ f ] ] # ∘ i₂ ∘ i₂ ≈⟨ ((#-resp-≈ ([]-cong₂ refl ([]-cong₂ (elimˡ +-η) ((elimʳ +-η) ⟩∘⟨refl)))) ⟩∘⟨refl) ⟩
|
||||
[ i₁ , [ (idC +₁ i₂ ∘ i₁) ∘ g , i₂ ∘ f ] ] # ∘ i₂ ∘ i₂ {A = X} {B = X} ≈⟨ {! !} ⟩
|
||||
[ i₁ , [ (idC +₁ i₂ ∘ i₁) ∘ g , i₂ ∘ f ] ] # ∘ i₂ ∘ i₂ ≈˘⟨ pullˡ (sym (#-Uniformity by-uni₂)) ⟩
|
||||
[ [ i₁ , (idC +₁ i₁ ∘ i₂) ∘ g ] , i₂ ∘ h ] # ∘ [ i₁ ∘ i₁ , i₂ +₁ idC ] ∘ i₂ ∘ i₂ ≈⟨ (refl⟩∘⟨ (pullˡ inject₂ ○ (+₁∘i₂ ○ identityʳ))) ⟩
|
||||
[ [ i₁ , (idC +₁ i₁ ∘ i₂) ∘ g ] , i₂ ∘ h ] # ∘ i₂ {A = A + X} {B = X} ≈˘⟨ ((#-resp-≈ ([]-cong₂ (∘[] ○ []-cong₂ (+₁∘i₁ ○ identityʳ) (pullˡ (+₁∘+₁ ○ +₁-cong₂ identity² refl))) refl)) ⟩∘⟨refl) ⟩
|
||||
[ (idC +₁ i₁) ∘ [ i₁ , (idC +₁ i₂) ∘ g ] , i₂ ∘ h ] # ∘ i₂ ≈⟨ (sym #-Folding) ⟩∘⟨refl ⟩
|
||||
([ i₁ , (idC +₁ i₂) ∘ g ] # +₁ h)# ∘ i₂ ≈⟨ ((#-resp-≈ (+₁-cong₂ by-fix refl)) ⟩∘⟨refl) ⟩
|
||||
|
@ -167,13 +167,24 @@ Here we give a different Characterization and show that it is equal.
|
|||
where
|
||||
g = (idC +₁ [ idC , idC ]) ∘ f
|
||||
h = [ i₁ ∘ i₁ , i₂ +₁ idC ] ∘ f
|
||||
by-uni₂ : (idC +₁ [ i₁ ∘ i₁ , i₂ +₁ idC ]) ∘ [ i₁ , [ (idC +₁ i₂ ∘ i₁) ∘ g , i₂ ∘ f ] ] ≈ [ [ i₁ , (idC +₁ i₁ ∘ i₂) ∘ g ] , i₂ ∘ h ] ∘ [ i₁ ∘ i₁ , i₂ +₁ idC ]
|
||||
by-uni₂ = begin
|
||||
(idC +₁ [ i₁ ∘ i₁ , i₂ +₁ idC ]) ∘ [ i₁ , [ (idC +₁ i₂ ∘ i₁) ∘ g , i₂ ∘ f ] ] ≈⟨ ∘[] ⟩
|
||||
[ (idC +₁ [ i₁ ∘ i₁ , i₂ +₁ idC ]) ∘ i₁ , (idC +₁ [ i₁ ∘ i₁ , i₂ +₁ idC ]) ∘ [ (idC +₁ i₂ ∘ i₁) ∘ g , i₂ ∘ f ] ] ≈⟨ []-cong₂ (+₁∘i₁ ○ identityʳ) ∘[] ⟩
|
||||
[ i₁ , [ (idC +₁ [ i₁ ∘ i₁ , i₂ +₁ idC ]) ∘ (idC +₁ i₂ ∘ i₁) ∘ g , (idC +₁ [ i₁ ∘ i₁ , i₂ +₁ idC ]) ∘ i₂ ∘ f ] ] ≈⟨ []-cong₂ refl ([]-cong₂ (pullˡ +₁∘+₁) (pullˡ +₁∘i₂)) ⟩
|
||||
[ i₁ , [ (idC ∘ idC +₁ [ i₁ ∘ i₁ , i₂ +₁ idC ] ∘ i₂ ∘ i₁) ∘ g , (i₂ ∘ [ i₁ ∘ i₁ , i₂ +₁ idC ]) ∘ f ] ] ≈⟨ []-cong₂ refl ([]-cong₂ ((+₁-cong₂ identity² (pullˡ inject₂ ○ +₁∘i₁)) ⟩∘⟨refl) (∘[] ⟩∘⟨refl)) ⟩
|
||||
[ i₁ , [ (idC +₁ i₁ ∘ i₂) ∘ g , [ i₂ ∘ i₁ ∘ i₁ , i₂ ∘ (i₂ +₁ idC) ] ∘ f ] ] ≈˘⟨ []-cong₂ refl ([]-cong₂ refl (pullˡ ∘[])) ⟩
|
||||
[ i₁ , [ (idC +₁ i₁ ∘ i₂) ∘ g , i₂ ∘ h ] ] ≈˘⟨ []-cong₂ inject₁ ([]-cong₂ inject₂ identityʳ) ⟩
|
||||
[ [ i₁ , (idC +₁ i₁ ∘ i₂) ∘ g ] ∘ i₁ , [ [ i₁ , (idC +₁ i₁ ∘ i₂) ∘ g ] ∘ i₂ , (i₂ ∘ h) ∘ idC ] ] ≈˘⟨ []-cong₂ (pullˡ inject₁) []∘+₁ ⟩
|
||||
[ [ [ i₁ , (idC +₁ i₁ ∘ i₂) ∘ g ] , i₂ ∘ h ] ∘ i₁ ∘ i₁ , [ [ i₁ , (idC +₁ i₁ ∘ i₂) ∘ g ] , i₂ ∘ h ] ∘ (i₂ +₁ idC) ] ≈˘⟨ ∘[] ⟩
|
||||
[ [ i₁ , (idC +₁ i₁ ∘ i₂) ∘ g ] , i₂ ∘ h ] ∘ [ i₁ ∘ i₁ , i₂ +₁ idC ] ∎
|
||||
by-uni₁ : (idC +₁ [ idC , idC ]) ∘ [ (idC +₁ i₁) ∘ g , f ] ≈ g ∘ [ idC , idC ]
|
||||
by-uni₁ = begin
|
||||
(idC +₁ [ idC , idC ]) ∘ [ (idC +₁ i₁) ∘ g , f ] ≈⟨ ∘[] ⟩
|
||||
(idC +₁ [ idC , idC ]) ∘ [ (idC +₁ i₁) ∘ g , f ] ≈⟨ ∘[] ⟩
|
||||
[ (idC +₁ [ idC , idC ]) ∘ (idC +₁ i₁) ∘ g , (idC +₁ [ idC , idC ]) ∘ f ] ≈⟨ []-cong₂ (pullˡ (+₁∘+₁ ○ +₁-cong₂ identity² inject₁)) refl ⟩
|
||||
[ (idC +₁ idC) ∘ g , (idC +₁ [ idC , idC ]) ∘ f ] ≈⟨ []-cong₂ (elimˡ ([]-unique id-comm-sym id-comm-sym)) refl ⟩
|
||||
[ g , g ] ≈⟨ sym (∘[] ○ []-cong₂ identityʳ identityʳ) ⟩
|
||||
g ∘ [ idC , idC ] ∎
|
||||
[ (idC +₁ idC) ∘ g , (idC +₁ [ idC , idC ]) ∘ f ] ≈⟨ []-cong₂ (elimˡ ([]-unique id-comm-sym id-comm-sym)) refl ⟩
|
||||
[ g , g ] ≈⟨ sym (∘[] ○ []-cong₂ identityʳ identityʳ) ⟩
|
||||
g ∘ [ idC , idC ] ∎
|
||||
by-fix : [ i₁ , (idC +₁ i₂) ∘ g ] # ≈ [ idC , g # ]
|
||||
by-fix = sym (begin
|
||||
[ idC , g # ] ≈⟨ []-cong₂ refl #-Fixpoint ⟩
|
||||
|
|
|
@ -10,11 +10,17 @@ open import Categories.Monad
|
|||
open import Categories.Category.Monoidal.Instance.Setoids
|
||||
open import Categories.Category.Cocartesian
|
||||
open import Categories.Object.Terminal
|
||||
open import Function.Equality as SΠ renaming (id to ⟶-id)
|
||||
open import Function.Equality as SΠ renaming (id to idₛ)
|
||||
import Categories.Morphism.Reasoning as MR
|
||||
open import Relation.Binary
|
||||
open import Data.Sum using (_⊎_; inj₁; inj₂)
|
||||
open import Data.Sum.Function.Setoid
|
||||
open import Data.Sum.Relation.Binary.Pointwise
|
||||
open import Agda.Builtin.Unit using (tt)
|
||||
|
||||
open import Data.Unit.Polymorphic using () renaming (⊤ to ⊤ₚ)
|
||||
open import Data.Empty.Polymorphic using () renaming (⊥ to ⊥ₚ)
|
||||
open import Categories.NaturalTransformation using (ntHelper)
|
||||
open import Function.Base using (id)
|
||||
```
|
||||
-->
|
||||
|
||||
|
@ -27,27 +33,92 @@ open Ambient ambient using ()
|
|||
Assuming the axiom of choice, the maybe monad is an instance of K in the category of setoids.
|
||||
|
||||
```agda
|
||||
module _ {c ℓ' : Level} where
|
||||
open Cocartesian (Setoids-Cocartesian {c} {c ⊔ ℓ'})
|
||||
open Terminal (terminal {c} {c ⊔ ℓ'})
|
||||
open MR (Setoids c (c ⊔ ℓ'))
|
||||
open Category (Setoids c (c ⊔ ℓ'))
|
||||
open Equiv
|
||||
module _ {c ℓ : Level} where
|
||||
data Maybe (A : Set c) : Set c where
|
||||
nothing : Maybe A
|
||||
just : A → Maybe A
|
||||
|
||||
maybe : Monad (Setoids c (c ⊔ ℓ'))
|
||||
maybe = record
|
||||
maybe-eq : ∀ (A : Setoid c ℓ) → Maybe (Setoid.Carrier A) → Maybe (Setoid.Carrier A) → Set ℓ
|
||||
maybe-eq _ nothing nothing = ⊤ₚ
|
||||
maybe-eq _ nothing (just y) = ⊥ₚ
|
||||
maybe-eq _ (just x) nothing = ⊥ₚ
|
||||
maybe-eq A (just x) (just y) = Setoid._≈_ A x y
|
||||
|
||||
maybeSetoid : Setoid c ℓ → Setoid c ℓ
|
||||
maybeSetoid A = record { Carrier = Maybe A.Carrier ; _≈_ = maybe-eq A ; isEquivalence = record { refl = λ {x} → refl' {x = x} ; sym = λ {x y} → sym' {x} {y} ; trans = λ {x y z} → trans' {x} {y} {z} } }
|
||||
where
|
||||
module A = Setoid A
|
||||
refl' : Reflexive (maybe-eq A)
|
||||
refl' {nothing} = lift tt
|
||||
refl' {just x} = IsEquivalence.refl A.isEquivalence
|
||||
sym' : Symmetric (maybe-eq A)
|
||||
sym' {nothing} {nothing} = id
|
||||
sym' {nothing} {just y} = id
|
||||
sym' {just x} {nothing} = id
|
||||
sym' {just x} {just y} = IsEquivalence.sym A.isEquivalence
|
||||
trans' : Transitive (maybe-eq A)
|
||||
trans' {nothing} {nothing} {nothing} = λ _ → id
|
||||
trans' {nothing} {nothing} {just z} = λ _ → id
|
||||
trans' {nothing} {just y} {nothing} = λ _ _ → lift tt
|
||||
trans' {nothing} {just y} {just z} = λ ()
|
||||
trans' {just x} {nothing} {nothing} = λ ()
|
||||
trans' {just x} {nothing} {just z} = λ ()
|
||||
trans' {just x} {just y} {nothing} = λ _ → id
|
||||
trans' {just x} {just y} {just z} = IsEquivalence.trans A.isEquivalence
|
||||
|
||||
maybeFun : ∀ {A B : Setoid c ℓ} → A ⟶ B → maybeSetoid A ⟶ maybeSetoid B
|
||||
maybeFun {A} {B} f = record { _⟨$⟩_ = app ; cong = λ {i} {j} → cong' i j }
|
||||
where
|
||||
app : Setoid.Carrier (maybeSetoid A) → Setoid.Carrier (maybeSetoid B)
|
||||
app nothing = nothing
|
||||
app (just x) = just (f ⟨$⟩ x)
|
||||
cong' : ∀ (i j : Maybe (Setoid.Carrier A)) → maybe-eq A i j → maybe-eq B (app i) (app j)
|
||||
cong' nothing nothing i≈j = i≈j
|
||||
cong' (just _) (just _) i≈j = cong f i≈j
|
||||
|
||||
_≋_ : ∀ {A B : Setoid c ℓ} → A ⟶ B → A ⟶ B → Set (c ⊔ ℓ)
|
||||
_≋_ {A} {B} f g = Setoid._≈_ (A ⇨ B) f g
|
||||
|
||||
maybeFun-id : ∀ {A : Setoid c ℓ} → (maybeFun idₛ) ≋ idₛ {A = maybeSetoid A}
|
||||
maybeFun-id {A} {nothing} {nothing} i≈j = i≈j
|
||||
maybeFun-id {A} {just _} {just _} i≈j = i≈j
|
||||
|
||||
|
||||
η : ∀ (A : Setoid c ℓ) → A ⟶ maybeSetoid A
|
||||
η A = record { _⟨$⟩_ = just ; cong = id }
|
||||
|
||||
μ : ∀ (A : Setoid c ℓ) → maybeSetoid (maybeSetoid A) ⟶ maybeSetoid A
|
||||
μ A = record { _⟨$⟩_ = app ; cong = λ {i} {j} → cong' i j }
|
||||
where
|
||||
app : Setoid.Carrier (maybeSetoid (maybeSetoid A)) → Setoid.Carrier (maybeSetoid A)
|
||||
app nothing = nothing
|
||||
app (just x) = x
|
||||
cong' : ∀ (i j : Maybe (Maybe (Setoid.Carrier A))) → maybe-eq (maybeSetoid A) i j → maybe-eq A (app i) (app j)
|
||||
cong' nothing nothing i≈j = i≈j
|
||||
cong' (just i) (just j) i≈j = i≈j
|
||||
|
||||
maybeMonad : Monad (Setoids c ℓ)
|
||||
maybeMonad = record
|
||||
{ F = record
|
||||
{ F₀ = λ X → X + ⊤
|
||||
; F₁ = λ {A} {B} f → f +₁ ⟶-id
|
||||
; identity = {! !}
|
||||
{ F₀ = maybeSetoid
|
||||
; F₁ = maybeFun
|
||||
; identity = λ {A} {x} {y} → maybeFun-id {A = A} {x} {y}
|
||||
; homomorphism = {! !}
|
||||
; F-resp-≈ = λ {A} {B} {f} {g} f≈g → +₁-cong₂ f≈g ?
|
||||
; F-resp-≈ = {! !}
|
||||
}
|
||||
; η = {! !}
|
||||
; μ = {! !}
|
||||
; η = ntHelper (record
|
||||
{ η = η
|
||||
; commute = {! !}
|
||||
})
|
||||
; μ = ntHelper (record
|
||||
{ η = μ
|
||||
; commute = {! !}
|
||||
})
|
||||
; assoc = {! !}
|
||||
; sym-assoc = {! !}
|
||||
; identityˡ = {! !}
|
||||
; identityʳ = {! !}
|
||||
}
|
||||
|
||||
|
||||
```
|
Loading…
Reference in a new issue