{-# OPTIONS --without-K --safe #-}
open import Categories.Category

-- Exponential Object

-- TODO: Where is the notation from? It is neither from Wikipedia nor the nLab.
module Categories.Object.Exponential {o  e} (𝒞 : Category o  e) where

open Category 𝒞

open import Level
open import Function using (_$_)

open import Categories.Morphism.Reasoning 𝒞
open import Categories.Object.Product 𝒞
  hiding (repack; repack≡id; repack∘; repack-cancel; up-to-iso; transport-by-iso)
open import Categories.Morphism 𝒞

open HomReasoning

private
  variable
    A B C D X Y : Obj

record Exponential (A B : Obj) : Set (o    e) where
  field
    B^A : Obj
    product : Product B^A A

  module product = Product product

  B^A×A : Obj
  B^A×A = product.A×B

  field
    eval     : B^A×A  B
    λg       :  (X×A : Product X A)  (Product.A×B X×A  B)  (X  B^A)
    β        :  (X×A : Product X A) {g : Product.A×B X×A  B} 
                 (eval  [ X×A  product ] λg X×A g ×id  g)
    λ-unique :  (X×A : Product X A) {g : Product.A×B X×A  B} {h : X  B^A} 
                 (eval  [ X×A  product ] h ×id  g)  (h  λg X×A g)

  η :  (X×A : Product X A) {f : X  B^A }  λg X×A (eval  [ X×A  product ] f ×id)  f
  η X×A {f} =  (λ-unique X×A Equiv.refl)

  λ-cong :  {X : Obj} (X×A : Product X A) {f g} 
             f  g  λg X×A f  λg X×A g
  λ-cong X×A {f = f} {g = g} f≡g = λ-unique X×A (β X×A  f≡g)

  subst :  (p₂ : Product C A) (p₃ : Product D A) {f g} 
            λg p₃ f  g  λg p₂ (f  [ p₂  p₃ ] g ×id)
  subst p₂ p₃ {f} {g} = λ-unique p₂ (begin
    eval  [ p₂  product ] λg p₃ f  g ×id
                           ≈˘⟨ refl⟩∘⟨ [ p₂  p₃  product ]×id∘×id 
    eval  [ p₃  product ] λg p₃ f ×id  [ p₂  p₃ ] g ×id
                           ≈⟨ pullˡ (β p₃) 
    f  [ p₂  p₃ ] g ×id )

  η-id : λg product eval  id
  η-id = begin
    λg product eval                                  ≈˘⟨ identityʳ 
    λg product eval  id                             ≈⟨ subst _ _ 
    λg product (eval  [ product  product ] id ×id) ≈⟨ η product 
    id                                               

  λ-unique′ :  (X×A : Product X A) {h i : X  B^A} 
                eval  [ X×A  product ] h ×id  eval  [ X×A  product ] i ×id  h  i
  λ-unique′ p eq = λ-unique p eq  ( (λ-unique p Equiv.refl))

-- some aliases to make proof signatures less ugly
[_]eval : ∀{A B}(e₁ : Exponential A B)  Exponential.B^A×A e₁  B
[ e₁ ]eval = Exponential.eval e₁

[_]λ : ∀{A B}(e₁ : Exponential A B)
   {X : Obj}  (X×A : Product X A)  (Product.A×B X×A  B)  (X  Exponential.B^A e₁)
[ e₁  = Exponential.λg e₁

{-
   D×C --id × f--> D×A --g--> B

   D --λ (g ∘ id × f)--> B^C
    \                   ^
     \                 /
     λ g       λ (e ∘ id × f)
       \        /
        v      /
          B^A
-}
λ-distrib :  (e₁ : Exponential C B) (e₂ : Exponential A B)
              (p₃ : Product D C) (p₄ : Product D A) (p₅ : Product (Exponential.B^A e₂) C)
              {f} {g : Product.A×B p₄  B} 
              [ e₁  p₃ (g  [ p₃  p₄ ]id× f)
               [ e₁  p₅ ([ e₂ ]eval  [ p₅  Exponential.product e₂ ]id× f)  [ e₂  p₄ g
λ-distrib e₁ e₂ p₃ p₄ p₅ {f} {g} =  $ e₁.λ-unique p₃ $ begin
  [ e₁ ]eval  ([ p₃  p₁ ] [ e₁  p₅ ([ e₂ ]eval  [ p₅  p₂ ]id× f)  [ e₂  p₄ g ×id)
                       ≈˘⟨ refl⟩∘⟨ [ p₃  p₅  p₁ ]×id∘×id 
  [ e₁ ]eval  [ p₅  p₁ ] [ e₁  p₅ ([ e₂ ]eval  [ p₅  p₂ ]id× f) ×id
              [ p₃  p₅ ] [ e₂  p₄ g ×id
                       ≈⟨ pullˡ (e₁.β p₅) 
  ([ e₂ ]eval  [ p₅  p₂ ]id× f)
               [ p₃  p₅ ] [ e₂  p₄ g ×id
                       ≈⟨ assoc 
  [ e₂ ]eval  [ p₅  p₂ ]id× f
              [ p₃  p₅ ] [ e₂  p₄ g ×id
                       ≈˘⟨ refl⟩∘⟨ [ p₄  p₂ , p₃  p₅ ]first↔second 
  [ e₂ ]eval  [ p₄  p₂ ] [ e₂  p₄ g ×id  [ p₃  p₄ ]id× f
                       ≈⟨ pullˡ (e₂.β p₄) 
  g  [ p₃  p₄ ]id× f 
  where module e₁ = Exponential e₁
        module e₂ = Exponential e₂
        p₁        = e₁.product
        p₂        = e₂.product

repack : ∀{A B} (e₁ e₂ : Exponential A B)  Exponential.B^A e₁  Exponential.B^A e₂
repack e₁ e₂ = e₂.λg e₁.product e₁.eval
  where
    module e₁ = Exponential e₁
    module e₂ = Exponential e₂

repack≡id : ∀{A B} (e : Exponential A B)  repack e e  id
repack≡id = Exponential.η-id

repack∘ :  (e₁ e₂ e₃ : Exponential A B)  repack e₂ e₃  repack e₁ e₂  repack e₁ e₃
repack∘ e₁ e₂ e₃ =
  let p₁ = product e₁ in
  let p₂ = product e₂ in
  begin
      [ e₃  p₂ [ e₂ ]eval
     [ e₂  p₁ [ e₁ ]eval
  ≈⟨ λ-cong e₃ p₂ (introʳ (second-id p₂)) ⟩∘⟨refl 
      [ e₃  p₂ ([ e₂ ]eval  [ p₂  p₂ ]id× id)
     [ e₂  p₁ [ e₁ ]eval
  ≈˘⟨ λ-distrib e₃ e₂ p₁ p₁ p₂ 
    [ e₃  p₁ ([ e₁ ]eval  [ p₁  p₁ ]id× id)
  ≈⟨ λ-cong e₃ p₁ ( (introʳ (second-id (product e₁)))) 
    [ e₃  p₁ [ e₁ ]eval
  
  where open Exponential

repack-cancel : ∀{A B} (e₁ e₂ : Exponential A B)  repack e₁ e₂  repack e₂ e₁  id
repack-cancel e₁ e₂ = repack∘ e₂ e₁ e₂  repack≡id e₂

up-to-iso : ∀{A B} (e₁ e₂ : Exponential A B)  Exponential.B^A e₁  Exponential.B^A e₂
up-to-iso e₁ e₂ = record
  { from = repack e₁ e₂
  ; to   = repack e₂ e₁
  ; iso  = record
    { isoˡ = repack-cancel e₂ e₁
    ; isoʳ = repack-cancel e₁ e₂
    }
  }

transport-by-iso :  (e : Exponential A B)  Exponential.B^A e  X  Exponential A B
transport-by-iso {X = X} e e≅X = record
  { B^A             = X
  ; product         = X×A
  ; eval            = e.eval
  ; λg              = λ Y×A Y×A⇒B  from  (e.λg Y×A Y×A⇒B)
  ; β               = λ Y×A {h}  begin
    e.eval  [ Y×A  X×A ] from  e.λg Y×A h ×id ≈⟨ refl⟩∘⟨ e.product.⟨⟩-cong₂ (pullˡ (cancelˡ isoˡ))
                                                                              (elimˡ Equiv.refl) 
    e.eval  [ Y×A  e.product ] e.λg Y×A h ×id  ≈⟨ e.β Y×A 
    h                                            
  ; λ-unique        = λ Y×A {h} {i} eq 
    switch-tofromˡ e≅X $ e.λ-unique Y×A $ begin
      e.eval  [ Y×A  e.product ] to  i ×id    ≈⟨ refl⟩∘⟨ e.product.⟨⟩-cong₂ assoc (introˡ Equiv.refl) 
      e.eval  [ Y×A  X×A ] i ×id               ≈⟨ eq 
      h                                          
  }
  where module e = Exponential e
        X×A      = Mobile e.product e≅X ≅.refl
        open _≅_ e≅X