This file introduces Elgot Monads.
module Monad.ElgotMonad {o ℓ e} (ED : ExtensiveDistributiveCategory o ℓ e) where open ExtensiveDistributiveCategory ED renaming (U to C; id to idC) open HomReasoning open Cocartesian (Extensive.cocartesian extensive) open Cartesian (ExtensiveDistributiveCategory.cartesian ED) open BinaryProducts products hiding (η) open MR C open Equiv
record IsPreElgot (T : Monad C) : Set (o ⊔ ℓ ⊔ e) where open Monad T open Functor F renaming (F₀ to T₀; F₁ to T₁) -- every TX needs to be equipped with an elgot algebra structure field elgotalgebras : ∀ {X} → Elgot-Algebra-on ED (T₀ X) module elgotalgebras {X} = Elgot-Algebra-on (elgotalgebras {X}) -- with the following associativity field assoc : ∀ {X Y Z} (f : Z ⇒ T₀ X + Z) (h : X ⇒ T₀ Y) → elgotalgebras._# (((μ.η _ ∘ T₁ h) +₁ idC) ∘ f) ≈ (μ.η _ ∘ T₁ h) ∘ (elgotalgebras._# {X}) f record PreElgotMonad : Set (o ⊔ ℓ ⊔ e) where field T : Monad C isPreElgot : IsPreElgot T open IsPreElgot isPreElgot public
record IsElgot (T : Monad C) : Set (o ⊔ ℓ ⊔ e) where open Monad T open Functor F renaming (F₀ to T₀; F₁ to T₁) -- iteration operator field _† : ∀ {X Y} → X ⇒ T₀ (Y + X) → X ⇒ T₀ Y †-resp-≈ : ∀ {X Y} {f g : X ⇒ T₀ (Y + X)} → f ≈ g → f † ≈ g † -- laws field Fixpoint : ∀ {X Y} {f : X ⇒ T₀ (Y + X)} → f † ≈ (μ.η _ ∘ T₁ [ η.η _ , f † ]) ∘ f Naturality : ∀ {X Y Z} {f : X ⇒ T₀ (Y + X)} {g : Y ⇒ T₀ Z} → (μ.η _ ∘ T₁ g) ∘ f † ≈ ((μ.η _ ∘ T₁ [ (T₁ i₁) ∘ g , η.η _ ∘ i₂ ]) ∘ f)† Codiagonal : ∀ {X Y} {f : X ⇒ T₀ ((Y + X) + X)} → (T₁ [ idC , i₂ ] ∘ f )† ≈ f † † Uniformity : ∀ {X Y Z} {f : X ⇒ T₀ (Y + X)} {g : Z ⇒ T₀ (Y + Z)} {h : Z ⇒ X} → f ∘ h ≈ (T₁ (idC +₁ h)) ∘ g → f † ∘ h ≈ g † record ElgotMonad : Set (o ⊔ ℓ ⊔ e) where field T : Monad C isElgot : IsElgot T open IsElgot isElgot public
-- elgot monads are pre-elgot Elgot⇒PreElgot : ElgotMonad → PreElgotMonad Elgot⇒PreElgot EM = record { T = T ; isPreElgot = record { elgotalgebras = λ {X} → record { _# = λ f → ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f) † ; #-Fixpoint = λ {Y} {f} → begin ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f) † ≈⟨ Fixpoint ⟩ (μ.η _ ∘ T₁ [ η.η _ , ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f) † ]) ∘ ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f) ≈⟨ pullˡ ∘[] ⟩ [ (μ.η _ ∘ T₁ [ η.η _ , ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f) † ]) ∘ T₁ i₁ , (μ.η _ ∘ T₁ [ η.η _ , ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f) † ]) ∘ η.η _ ∘ i₂ ] ∘ f ≈˘⟨ []-cong₂ (pushʳ (homomorphism)) (pushˡ (pushʳ (η.commute _))) ⟩∘⟨refl ⟩ [ μ.η _ ∘ T₁ ([ η.η _ , ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f) † ] ∘ i₁) , (μ.η _ ∘ (η.η _ ∘ [ η.η _ , ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f) † ])) ∘ i₂ ] ∘ f ≈⟨ []-cong₂ (∘-resp-≈ʳ (F-resp-≈ inject₁)) (pullʳ (pullʳ inject₂)) ⟩∘⟨refl ⟩ [ μ.η _ ∘ (T₁ (η.η _)) , μ.η _ ∘ η.η _ ∘ ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f) † ] ∘ f ≈⟨ []-cong₂ (T.identityˡ) (cancelˡ T.identityʳ) ⟩∘⟨refl ⟩ [ idC , ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f) † ] ∘ f ∎ ; #-Uniformity = λ {X} {Y} {f} {g} {h} H → sym (Uniformity (begin ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ g) ∘ h ≈˘⟨ pushʳ H ⟩ [ T₁ i₁ , η.η _ ∘ i₂ ] ∘ (idC +₁ h) ∘ f ≈⟨ pullˡ []∘+₁ ⟩ [ T₁ i₁ ∘ idC , (η.η _ ∘ i₂) ∘ h ] ∘ f ≈⟨ []-cong₂ (trans identityʳ (F-resp-≈ (sym identityʳ))) assoc ⟩∘⟨refl ⟩ [ T₁ (i₁ ∘ idC) , η.η _ ∘ i₂ ∘ h ] ∘ f ≈˘⟨ []-cong₂ (F-resp-≈ +₁∘i₁) (pullʳ +₁∘i₂) ⟩∘⟨refl ⟩ [ T₁ ((idC +₁ h) ∘ i₁) , (η.η _ ∘ (idC +₁ h)) ∘ i₂ ] ∘ f ≈⟨ []-cong₂ homomorphism ( pushˡ (η.commute _)) ⟩∘⟨refl ⟩ [ T₁ (idC +₁ h) ∘ T₁ i₁ , T₁ (idC +₁ h) ∘ η.η _ ∘ i₂ ] ∘ f ≈˘⟨ pullˡ ∘[] ⟩ T₁ (idC +₁ h) ∘ [ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f ∎)) ; #-Folding = λ {X} {Y} {f} {h} → begin ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ ((([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f) †) +₁ h))† ≈⟨ †-resp-≈ []∘+₁ ⟩ [ T₁ i₁ ∘ ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f) † , (η.η _ ∘ i₂) ∘ h ] † ≈⟨ {! !} ⟩ {! !} ≈⟨ {! !} ⟩ [ [ T₁ i₁ ∘ idC , (η.η _ ∘ i₂) ∘ i₁ ] ∘ f , (η.η _ ∘ i₂) ∘ h ] † ≈˘⟨ †-resp-≈ ([]-cong₂ (pullˡ []∘+₁) (pullˡ inject₂)) ⟩ [ [ T₁ i₁ , η.η _ ∘ i₂ ] ∘ (idC +₁ i₁) ∘ f , [ T₁ i₁ , η.η _ ∘ i₂ ] ∘ i₂ ∘ h ] † ≈˘⟨ †-resp-≈ ∘[] ⟩ ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ [ (idC +₁ i₁) ∘ f , i₂ ∘ h ])† ∎ ; #-resp-≈ = λ fg → †-resp-≈ (∘-resp-≈ʳ fg) } ; assoc = λ {X} {Y} {Z} f h → begin -- TODO tidy up by moving doing sym outside, apply Naturality and then do `†-resp-≈ pullˡ` once. ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ (μ.η Y ∘ T₁ h +₁ idC) ∘ f)† ≈⟨ †-resp-≈ (pullˡ []∘+₁) ⟩ (([ T₁ i₁ ∘ μ.η _ ∘ T₁ h , (η.η _ ∘ i₂) ∘ idC ] ∘ f)†) ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-cong₂ assoc (sym identityʳ))) ⟩ ([ (T₁ i₁ ∘ μ.η _) ∘ T₁ h , η.η _ ∘ i₂ ] ∘ f)† ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-congʳ (pullˡ (μ.commute _)))) ⟩ ([ μ.η _ ∘ T₁ (T₁ i₁) ∘ T₁ h , η.η _ ∘ i₂ ] ∘ f)† ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ʳ homomorphism) (cancelˡ T.identityʳ))) ⟩ ([ μ.η _ ∘ T₁ (T₁ i₁ ∘ h) , μ.η _ ∘ η.η _ ∘ η.η _ ∘ i₂ ] ∘ f)† ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-cong₂ (∘-resp-≈ʳ (F-resp-≈ inject₁)) (∘-resp-≈ʳ (pullʳ inject₂)))) ⟩ ([ μ.η _ ∘ T₁ ([ T₁ i₁ ∘ h , η.η _ ∘ i₂ ] ∘ i₁) , μ.η _ ∘ (η.η _ ∘ [ T₁ i₁ ∘ h , η.η _ ∘ i₂ ]) ∘ i₂ ] ∘ f)† ≈˘⟨ †-resp-≈ (∘-resp-≈ˡ ([]-cong₂ (pullʳ (sym homomorphism)) (pullʳ (pullˡ (η.sym-commute _))))) ⟩ ([ (μ.η _ ∘ T₁ [ T₁ i₁ ∘ h , η.η _ ∘ i₂ ]) ∘ T₁ i₁ , (μ.η _ ∘ T₁ [ T₁ i₁ ∘ h , η.η _ ∘ i₂ ]) ∘ η.η _ ∘ i₂ ] ∘ f)† ≈˘⟨ †-resp-≈ (pullˡ ∘[]) ⟩ ((μ.η _ ∘ T₁ [ T₁ i₁ ∘ h , η.η _ ∘ i₂ ]) ∘ [ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f)† ≈˘⟨ Naturality ⟩ (μ.η Y ∘ T₁ h) ∘ ([ T₁ i₁ , η.η _ ∘ i₂ ] ∘ f)† ∎ } } where open ElgotMonad EM module T = Monad T open T using (F; η; μ) open Functor F renaming (F₀ to T₀; F₁ to T₁)