{-# OPTIONS --without-K --safe #-}
open import Level
open import Categories.Category.Core
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.BinaryProducts using (BinaryProducts)
open import Categories.Category.Cocartesian using (Cocartesian)
import Categories.Morphism as M
import Categories.Morphism.Reasoning as MR
module Categories.Category.Distributive {o ℓ e} (𝒞 : Category o ℓ e) where
open Category 𝒞
open M 𝒞
open MR 𝒞
open HomReasoning
open Equiv
record Distributive : Set (levelOfTerm 𝒞) where
field
cartesian : Cartesian 𝒞
cocartesian : Cocartesian 𝒞
open Cartesian cartesian using (products)
open BinaryProducts products
open Cocartesian cocartesian
distributeˡ : ∀ {A B C : Obj} → A × B + A × C ⇒ A × (B + C)
distributeˡ = [ id ⁂ i₁ , id ⁂ i₂ ]
field
isIsoˡ : ∀ {A B C : Obj} → IsIso (distributeˡ {A} {B} {C})
distributeʳ : ∀ {A B C : Obj} → B × A + C × A ⇒ (B + C) × A
distributeʳ = [ i₁ ⁂ id , i₂ ⁂ id ]
isIsoʳ : ∀ {A B C : Obj} → IsIso (distributeʳ {A} {B} {C})
isIsoʳ {A} {B} {C} = record
{ inv = ((swap +₁ swap) ∘ inv) ∘ swap
; iso = record
{ isoˡ = begin
(((swap +₁ swap) ∘ inv) ∘ swap) ∘ [ i₁ ⁂ id , i₂ ⁂ id ] ≈⟨ ∘[] ⟩
[ (((swap +₁ swap) ∘ inv) ∘ swap) ∘ (i₁ ⁂ id) , (((swap +₁ swap) ∘ inv) ∘ swap) ∘ (i₂ ⁂ id) ] ≈⟨ []-cong₂ (pullʳ swap∘⁂) (pullʳ swap∘⁂) ⟩
[ ((swap +₁ swap) ∘ inv) ∘ (id ⁂ i₁) ∘ swap , ((swap +₁ swap) ∘ inv) ∘ (id ⁂ i₂) ∘ swap ] ≈˘⟨ ∘[] ⟩
((swap +₁ swap) ∘ inv) ∘ [ (id ⁂ i₁) ∘ swap , (id ⁂ i₂) ∘ swap ] ≈˘⟨ refl⟩∘⟨ []∘+₁ ⟩
((swap +₁ swap) ∘ inv) ∘ [ (id ⁂ i₁) , (id ⁂ i₂) ] ∘ (swap +₁ swap) ≈⟨ cancelInner isoˡ ⟩
(swap +₁ swap) ∘ (swap +₁ swap) ≈⟨ +₁∘+₁ ⟩
(swap ∘ swap) +₁ (swap ∘ swap) ≈⟨ +₁-cong₂ swap∘swap swap∘swap ⟩
(id +₁ id) ≈⟨ +-unique id-comm-sym id-comm-sym ⟩
id ∎
; isoʳ = begin
[ i₁ ⁂ id , i₂ ⁂ id ] ∘ ((swap +₁ swap) ∘ inv) ∘ swap ≈⟨ pull-first []∘+₁ ⟩
[ (i₁ ⁂ id) ∘ swap , (i₂ ⁂ id) ∘ swap ] ∘ inv ∘ swap ≈˘⟨ []-cong₂ swap∘⁂ swap∘⁂ ⟩∘⟨refl ⟩
[ swap ∘ (id ⁂ i₁) , swap ∘ (id ⁂ i₂) ] ∘ inv ∘ swap ≈˘⟨ ∘[] ⟩∘⟨refl ⟩
(swap ∘ [ (id ⁂ i₁) , (id ⁂ i₂) ]) ∘ inv ∘ swap ≈⟨ cancelInner isoʳ ⟩
swap ∘ swap ≈⟨ swap∘swap ⟩
id ∎
}
}
where
open IsIso (isIsoˡ {A} {B} {C})