{-# OPTIONS --without-K --safe #-}

module Categories.Functor.Construction.LiftSetoids where

open import Level
open import Relation.Binary
open import Function.Equality
open import Function using (_$_) renaming (id to idf)

open import Categories.Category
open import Categories.Category.Instance.Setoids
open import Categories.Functor

private
  variable
    c  : Level

-- Use pattern-matching (instead of explicit calls to lower) to minimize the
-- number of needed parens, and also make it syntactically apparent that
-- this is indeed just a Lift.
LiftedSetoid :  c′ ℓ′  Setoid c   Setoid (c  c′) (  ℓ′)
LiftedSetoid c′ ℓ′ S = record
  { Carrier       = Lift c′ Carrier
  ; _≈_           = λ where (lift x) (lift y)  Lift ℓ′ $ x  y
  ; isEquivalence = record
    { refl  = lift refl
    ; sym   = λ where (lift eq)             lift $ sym eq
    ; trans = λ where (lift eq) (lift eq′)  lift $ trans eq eq′
    }
  }
  where open Setoid S

LiftSetoids :  c′ ℓ′  Functor (Setoids c ) (Setoids (c  c′) (  ℓ′))
LiftSetoids c′ ℓ′ = record
  { F₀           = LiftedSetoid c′ ℓ′
  ; F₁           = λ f  record
    { _⟨$⟩_  = λ where (lift x)   lift $ f ⟨$⟩ x
    ; cong  = λ where (lift eq)  lift $ cong f eq
    }
  ; identity     = idf
  ; homomorphism = λ where {f = f} {g = g} (lift eq)  lift $ cong g $ cong f eq
  ; F-resp-≈     = λ where fx≈gy (lift x≈y)           lift $ fx≈gy x≈y
  }