open import Level open import Categories.FreeObjects.Free open import Categories.Functor.Core open import Categories.Functor.Algebra open import Categories.Functor.Coalgebra open import Categories.Object.Terminal open import Categories.Object.Exponential open import Categories.Category.Core using (Category) open import Categories.Category.Distributive using (Distributive) open import Categories.Category.CartesianClosed using (CartesianClosed) open import Categories.Category.Cocartesian using (Cocartesian) open import Categories.Category.Cartesian using (Cartesian) open import Categories.Category.BinaryProducts using (BinaryProducts) import Categories.Morphism as M import Categories.Morphism.Reasoning as MR
In a CCC free elgot algebras are automatically stable.
module Algebra.Elgot.Properties {o ℓ e} {C : Category o ℓ e} (distributive : Distributive C) (expos : ∀ {A B} → Exponential C A B) where open Category C open HomReasoning open Equiv open MR C open Distributive distributive open import Categories.Category.Distributive.Properties distributive open Cartesian cartesian open BinaryProducts products hiding (η) renaming (unique to ⟨⟩-unique) open Cocartesian cocartesian private ccc : CartesianClosed C ccc = record { cartesian = cartesian ; exp = expos } open CartesianClosed ccc hiding (exp; cartesian) open import Category.Construction.ElgotAlgebras cocartesian open import Category.Construction.ElgotAlgebras.Exponentials distributive expos open import Algebra.Elgot cocartesian open import Algebra.Elgot.Free cocartesian open import Algebra.Elgot.Stable distributive open Elgot-Algebra-Morphism renaming (h to <_>) free-isStableˡ : ∀ {Y} (fe : FreeElgotAlgebra Y) → IsStableFreeElgotAlgebraˡ fe IsStableFreeElgotAlgebraˡ.[_,_]♯ˡ (free-isStableˡ {Y} fe) {X} A f = (eval′ ∘ (< FreeObject._* fe {Exponential-Elgot-Algebra {A} {X}} (λg f) > ⁂ id)) where open FreeObject fe IsStableFreeElgotAlgebraˡ.♯ˡ-law (free-isStableˡ {Y} fe) {X} {A} f = sym (begin (eval′ ∘ (< (λg f)* > ⁂ id)) ∘ (η ⁂ id) ≈⟨ pullʳ ⁂∘⁂ ⟩ eval′ ∘ ((< (λg f)* > ∘ η) ⁂ id ∘ id) ≈⟨ refl⟩∘⟨ (⁂-cong₂ (*-lift (λg f)) identity²) ⟩ eval′ ∘ (λg f ⁂ id) ≈⟨ β′ ⟩ f ∎) where open FreeObject fe IsStableFreeElgotAlgebraˡ.♯ˡ-preserving (free-isStableˡ {Y} fe) {X} {B} f {Z} h = begin (eval′ ∘ (< (λg f)* > ⁂ id)) ∘ (h #ʸ ⁂ id) ≈⟨ pullʳ ⁂∘⁂ ⟩ eval′ ∘ (< (λg f)* > ∘ h #ʸ ⁂ id ∘ id) ≈⟨ refl⟩∘⟨ (⁂-cong₂ (preserves ((λg f)*)) identity²) ⟩ eval′ ∘ (λg (((eval′ +₁ id) ∘ distributeʳ⁻¹ ∘ ((< (λg f)* > +₁ id) ∘ h ⁂ id)) #ᵇ) ⁂ id) ≈⟨ β′ ⟩ ((eval′ +₁ id) ∘ distributeʳ⁻¹ ∘ ((< (λg f)* > +₁ id) ∘ h ⁂ id)) #ᵇ ≈˘⟨ #ᵇ-resp-≈ (refl⟩∘⟨ refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ refl identity²)) ⟩ ((eval′ +₁ id) ∘ distributeʳ⁻¹ ∘ ((< (λg f)* > +₁ id) ⁂ id) ∘ (h ⁂ id)) #ᵇ ≈⟨ #ᵇ-resp-≈ (refl⟩∘⟨ pullˡ (sym (distributeʳ⁻¹-natural id < (λg f) * > id))) ⟩ ((eval′ +₁ id) ∘ ((< (λg f)* > ⁂ id +₁ id ⁂ id) ∘ distributeʳ⁻¹) ∘ (h ⁂ id)) #ᵇ ≈⟨ #ᵇ-resp-≈ (refl⟩∘⟨ assoc ○ pullˡ (+₁∘+₁ ○ +₁-cong₂ refl (elimʳ (⟨⟩-unique id-comm id-comm)))) ⟩ ((eval′ ∘ (< (λg f)* > ⁂ id) +₁ id) ∘ distributeʳ⁻¹ ∘ (h ⁂ id)) #ᵇ ∎ where open FreeObject fe renaming (FX to KY) open Elgot-Algebra B using () renaming (_# to _#ᵇ; #-resp-≈ to #ᵇ-resp-≈) open Elgot-Algebra KY using () renaming (_# to _#ʸ) IsStableFreeElgotAlgebraˡ.♯ˡ-unique (free-isStableˡ {Y} fe) {X} {B} f g eq₁ eq₂ = λ-inj (begin λg g ≈⟨ *-uniq (λg f) (record { h = λg g ; preserves = λ {D} {h} → begin λg g ∘ (h #ʸ) ≈⟨ subst ⟩ λg (g ∘ (h #ʸ ⁂ id)) ≈⟨ λ-cong (eq₂ h) ⟩ λg (((g +₁ id) ∘ distributeʳ⁻¹ ∘ (h ⁂ id)) #ᵇ) ≈˘⟨ λ-cong (#ᵇ-resp-≈ (pullˡ (+₁∘+₁ ○ +₁-cong₂ β′ (elimʳ (⟨⟩-unique id-comm id-comm))))) ⟩ λg (((eval′ +₁ id) ∘ (λg g ⁂ id +₁ id ⁂ id) ∘ distributeʳ⁻¹ ∘ (h ⁂ id)) #ᵇ) ≈˘⟨ λ-cong (#ᵇ-resp-≈ (refl⟩∘⟨ (pullˡ (sym (distributeʳ⁻¹-natural id (λg g) id)) ○ assoc))) ⟩ λg (((eval′ +₁ id) ∘ distributeʳ⁻¹ ∘ ((λg g +₁ id) ⁂ id) ∘ (h ⁂ id)) #ᵇ) ≈⟨ λ-cong (#ᵇ-resp-≈ (refl⟩∘⟨ refl⟩∘⟨ (⁂∘⁂ ○ ⁂-cong₂ refl identity²))) ⟩ λg (((eval′ +₁ id) ∘ distributeʳ⁻¹ ∘ ((λg g +₁ id) ∘ h ⁂ id)) #ᵇ) ∎ }) (subst ○ λ-cong (sym eq₁)) ⟩ < (λg f)* > ≈˘⟨ η-exp′ ⟩ λg (eval′ ∘ (< (λg f)* > ⁂ id)) ∎) where open FreeObject fe renaming (FX to KY) open Elgot-Algebra B using () renaming (_# to _#ᵇ; #-resp-≈ to #ᵇ-resp-≈) open Elgot-Algebra KY using () renaming (_# to _#ʸ) free-isStable : ∀ {Y} (fe : FreeElgotAlgebra Y) → IsStableFreeElgotAlgebra fe free-isStable {Y} fe = isStableˡ⇒isStable fe (free-isStableˡ fe)