module Monad.Instance.Delay.Quotienting {o ℓ e} (ambient : Ambient o ℓ e) where open Ambient ambient open import Categories.Diagram.Coequalizer C open import Monad.Instance.Delay ambient open F-Coalgebra-Morphism using () renaming (f to u; commutes to coalg-commutes)
The coinductive definition of the delay monad yields a ‘wrong’ kind of equality called strong bisimilarity, which differentiates between computations with different execution times, instead we want two computations to be equal, when they both terminate with the same result (or don’t terminate at all). This is called weak bisimilarity. The ideas is then to quotient the delay monad with this ‘right’ kind of equality and show that the result \(\tilde{D}\) is again a (strong) monad.
In category theory existence of coequalizers corresponds to qoutienting, so we will express the quotiented delay monad via the following coequalizer:
Existence of the coequalizer doesn’t suffice, we will need some conditions having to do with preservation of the coequalizer, so let’s first define what it means for a coequalizer to be preserved by an endofunctor:
preserves : ∀ {X Y} {f g : X ⇒ Y} → Endofunctor C → Coequalizer f g → Set (o ⊔ ℓ ⊔ e) preserves {X} {Y} {f} {g} F coeq = IsCoequalizer (Functor.₁ F f) (Functor.₁ F g) (Functor.₁ F (Coequalizer.arr coeq))
We will now show that the following conditions are equivalent:
module _ (D : DelayM) where open DelayM D renaming (functor to D-Functor; monad to D-Monad; kleisli to D-Kleisli) open Functor D-Functor using () renaming (F₁ to D₁; homomorphism to D-homomorphism; F-resp-≈ to D-resp-≈; identity to D-identity) open RMonad D-Kleisli using (extend; extend-≈) renaming (assoc to k-assoc; identityʳ to k-identityʳ; identityˡ to k-identityˡ) open Monad D-Monad using () renaming (assoc to M-assoc; identityʳ to M-identityʳ) open HomReasoning open M C open MR C open Equiv module Quotiented (coeqs : ∀ X → Coequalizer (extend (ι {X})) (D₁ π₁)) where Ď₀ : Obj → Obj Ď₀ X = Coequalizer.obj (coeqs X) ρ : ∀ {X} → D₀ X ⇒ Ď₀ X ρ {X} = Coequalizer.arr (coeqs X) ρ-epi : ∀ {X} → Epi (ρ {X}) ρ-epi {X} = Coequalizer⇒Epi (coeqs X) ρ▷ : ∀ {X} → ρ ∘ ▷ ≈ ρ {X} ρ▷ {X} = sym (begin ρ ≈⟨ introʳ intro-helper ⟩ ρ ∘ D₁ π₁ ∘ D₁ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈⟨ pullˡ (sym equality) ⟩ (ρ ∘ extend ι) ∘ D₁ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈⟨ pullʳ (sym k-assoc) ⟩ ρ ∘ extend (extend ι ∘ now ∘ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩) ≈⟨ (refl⟩∘⟨ extend-≈ (pullˡ k-identityʳ)) ⟩ ρ ∘ extend (ι ∘ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩) ≈⟨ (refl⟩∘⟨ extend-≈ helper) ⟩ ρ ∘ extend (▷ ∘ now) ≈⟨ (refl⟩∘⟨ sym (▷∘extendʳ now)) ⟩ ρ ∘ extend now ∘ ▷ ≈⟨ elim-center k-identityˡ ⟩ ρ ∘ ▷ ∎) where open Coequalizer (coeqs X) using (equality; coequalize; id-coequalize; coequalize-resp-≈) renaming (universal to coeq-universal; unique to coeq-unique; unique′ to coeq-unique′) intro-helper : D₁ π₁ ∘ D₁ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈ idC intro-helper = sym D-homomorphism ○ D-resp-≈ project₁ ○ D-identity helper : ι ∘ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈ ▷ ∘ now helper = begin ι ∘ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈⟨ introˡ (_≅_.isoˡ out-≅) ⟩ (out⁻¹ ∘ out) ∘ ι ∘ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈⟨ pullʳ (pullˡ (coalg-commutes ((Terminal.! (coalgebras X) {A = record { A = X × N ; α = _≅_.from nno-iso }})))) ⟩ out⁻¹ ∘ ((idC +₁ ι) ∘ _≅_.from nno-iso) ∘ ⟨ idC , s ∘ z ∘ Terminal.! terminal ⟩ ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ sym (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identity² refl)) ⟩ out⁻¹ ∘ ((idC +₁ ι) ∘ _≅_.from nno-iso) ∘ (idC ⁂ s) ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ sym inject₂ ⟩∘⟨refl) ⟩ out⁻¹ ∘ ((idC +₁ ι) ∘ _≅_.from nno-iso) ∘ (_≅_.to nno-iso ∘ i₂) ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ ≈⟨ (refl⟩∘⟨ (pullʳ (pullˡ (cancelˡ (_≅_.isoʳ nno-iso))))) ⟩ out⁻¹ ∘ (idC +₁ ι) ∘ i₂ ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ ≈⟨ (refl⟩∘⟨ pullˡ +₁∘i₂) ⟩ out⁻¹ ∘ (i₂ ∘ ι) ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ sym inject₁) ⟩ out⁻¹ ∘ (i₂ ∘ ι) ∘ _≅_.to nno-iso ∘ i₁ ≈⟨ (refl⟩∘⟨ intro-center (_≅_.isoˡ out-≅) ⟩∘⟨refl) ⟩ out⁻¹ ∘ (i₂ ∘ (out⁻¹ ∘ out) ∘ ι) ∘ _≅_.to nno-iso ∘ i₁ ≈⟨ (refl⟩∘⟨ (refl⟩∘⟨ pullʳ (coalg-commutes ((Terminal.! (coalgebras X) {A = record { A = X × N ; α = _≅_.from nno-iso }})))) ⟩∘⟨refl) ⟩ out⁻¹ ∘ (i₂ ∘ out⁻¹ ∘ (idC +₁ ι) ∘ _≅_.from nno-iso) ∘ _≅_.to nno-iso ∘ i₁ ≈⟨ (refl⟩∘⟨ (pullʳ (pullˡ (pullʳ (cancelʳ (_≅_.isoʳ nno-iso)))))) ⟩ out⁻¹ ∘ i₂ ∘ (out⁻¹ ∘ (idC +₁ ι)) ∘ i₁ ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ pullʳ +₁∘i₁) ⟩ out⁻¹ ∘ i₂ ∘ out⁻¹ ∘ i₁ ∘ idC ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ identityʳ) ⟩ out⁻¹ ∘ i₂ ∘ out⁻¹ ∘ i₁ ≈⟨ ((refl⟩∘⟨ sym-assoc) ○ assoc²'') ⟩ ▷ ∘ now ∎ Ď-Functor : Endofunctor C Ď-Functor = record { F₀ = Ď₀ ; F₁ = F₁' ; identity = λ {X} → Coequalizer.coequalize-resp-≈ (coeqs X) (elimʳ D-identity) ○ sym (Coequalizer.id-coequalize (coeqs X)) ; homomorphism = λ {X} {Y} {Z} {f} {g} → sym (Coequalizer.unique (coeqs X) (sym (begin (F₁' g ∘ F₁' f) ∘ ρ ≈⟨ pullʳ (sym (Coequalizer.universal (coeqs X))) ⟩ F₁' g ∘ ρ ∘ D₁ f ≈⟨ pullˡ (sym (Coequalizer.universal (coeqs Y))) ⟩ (ρ ∘ D₁ g) ∘ D₁ f ≈⟨ pullʳ (sym D-homomorphism) ⟩ ρ ∘ D₁ (g ∘ f) ∎))) ; F-resp-≈ = λ {X} {Y} {f} {g} eq → Coequalizer.coequalize-resp-≈ (coeqs X) (refl⟩∘⟨ (D-resp-≈ eq)) } where F₁' : ∀ {X} {Y} (f : X ⇒ Y) → Ď₀ X ⇒ Ď₀ Y F₁' {X} {Y} f = coequalize {h = ρ ∘ D₁ f} (begin (ρ ∘ D₁ f) ∘ extend ι ≈⟨ pullʳ (sym k-assoc) ⟩ ρ ∘ extend (extend (now ∘ f) ∘ ι) ≈⟨ refl⟩∘⟨ (extend-≈ (sym (Terminal.!-unique (coalgebras Y) (record { f = extend (now ∘ f) ∘ ι ; commutes = begin out ∘ extend (now ∘ f) ∘ ι ≈⟨ pullˡ (extendlaw (now ∘ f)) ⟩ ([ out ∘ now ∘ f , i₂ ∘ D₁ f ] ∘ out) ∘ ι ≈⟨ pullʳ (coalg-commutes (Terminal.! (coalgebras X) {A = record { A = X × N ; α = _≅_.from nno-iso }})) ⟩ [ out ∘ now ∘ f , i₂ ∘ D₁ f ] ∘ (idC +₁ ι) ∘ _≅_.from nno-iso ≈⟨ (([]-cong₂ (pullˡ unitlaw) refl) ⟩∘⟨refl) ⟩ (f +₁ D₁ f) ∘ (idC +₁ ι) ∘ _≅_.from nno-iso ≈⟨ pullˡ +₁∘+₁ ⟩ (f ∘ idC +₁ D₁ f ∘ ι) ∘ _≅_.from nno-iso ≈⟨ ((+₁-cong₂ id-comm (sym identityʳ)) ⟩∘⟨refl) ⟩ (idC ∘ f +₁ (D₁ f ∘ ι) ∘ idC) ∘ _≅_.from nno-iso ≈⟨ sym (pullˡ +₁∘+₁) ⟩ (idC +₁ extend (now ∘ f) ∘ ι) ∘ (f +₁ idC) ∘ _≅_.from nno-iso ∎ })))) ⟩ ρ ∘ extend (u (Terminal.! (coalgebras Y) {A = record { A = X × N ; α = (f +₁ idC) ∘ _≅_.from nno-iso }})) ≈⟨ (refl⟩∘⟨ (extend-≈ (Terminal.!-unique (coalgebras Y) (record { f = ι ∘ (f ⁂ idC) ; commutes = begin out ∘ ι ∘ (f ⁂ idC) ≈⟨ pullˡ (coalg-commutes (Terminal.! (coalgebras Y) {A = record { A = Y × N ; α = _≅_.from nno-iso }})) ⟩ ((idC +₁ ι) ∘ _≅_.from nno-iso) ∘ (f ⁂ idC) ≈⟨ assoc ⟩ (idC +₁ ι) ∘ _≅_.from nno-iso ∘ (f ⁂ idC) ≈⟨ (refl⟩∘⟨ (introʳ (_≅_.isoˡ nno-iso))) ⟩ (idC +₁ ι) ∘ (_≅_.from nno-iso ∘ (f ⁂ idC)) ∘ [ ⟨ idC , z ∘ Terminal.! terminal ⟩ , idC ⁂ s ] ∘ _≅_.from nno-iso ≈⟨ (refl⟩∘⟨ pullʳ (pullˡ ∘[])) ⟩ (idC +₁ ι) ∘ _≅_.from nno-iso ∘ [ (f ⁂ idC) ∘ ⟨ idC , z ∘ Terminal.! terminal ⟩ , (f ⁂ idC) ∘ (idC ⁂ s) ] ∘ _≅_.from nno-iso ≈⟨ (refl⟩∘⟨ (refl⟩∘⟨ (([]-cong₂ (⁂∘⟨⟩ ○ ⟨⟩-cong₂ identityʳ identityˡ) (⁂∘⁂ ○ ⁂-cong₂ identityʳ identityˡ)) ⟩∘⟨refl))) ⟩ (idC +₁ ι) ∘ _≅_.from nno-iso ∘ [ ⟨ f , z ∘ Terminal.! terminal ⟩ , (f ⁂ s) ] ∘ _≅_.from nno-iso ≈⟨ (refl⟩∘⟨ refl⟩∘⟨ []-cong₂ (⟨⟩-cong₂ refl (refl⟩∘⟨ Terminal.!-unique terminal (Terminal.! terminal ∘ f))) refl ⟩∘⟨refl) ⟩ (idC +₁ ι) ∘ _≅_.from nno-iso ∘ [ ⟨ f , z ∘ Terminal.! terminal ∘ f ⟩ , (f ⁂ s) ] ∘ _≅_.from nno-iso ≈⟨ sym (refl⟩∘⟨ refl⟩∘⟨ []-cong₂ (⟨⟩∘ ○ ⟨⟩-cong₂ identityˡ assoc) (⁂∘⁂ ○ ⁂-cong₂ identityˡ identityʳ) ⟩∘⟨refl) ⟩ (idC +₁ ι) ∘ _≅_.from nno-iso ∘ [ ⟨ idC , z ∘ Terminal.! terminal ⟩ ∘ f , (idC ⁂ s) ∘ (f ⁂ idC) ] ∘ _≅_.from nno-iso ≈⟨ sym (refl⟩∘⟨ (pullʳ (pullˡ []∘+₁))) ⟩ (idC +₁ ι) ∘ (_≅_.from nno-iso ∘ [ ⟨ idC , z ∘ Terminal.! terminal ⟩ , idC ⁂ s ]) ∘ (f +₁ (f ⁂ idC)) ∘ _≅_.from nno-iso ≈⟨ sym (refl⟩∘⟨ introˡ (_≅_.isoʳ nno-iso)) ⟩ (idC +₁ ι) ∘ (f +₁ (f ⁂ idC)) ∘ _≅_.from nno-iso ≈⟨ pullˡ (+₁∘+₁ ○ +₁-cong₂ identityˡ refl) ⟩ (f +₁ ι ∘ (f ⁂ idC)) ∘ _≅_.from nno-iso ≈⟨ sym (pullˡ (+₁∘+₁ ○ +₁-cong₂ identityˡ identityʳ)) ⟩ (idC +₁ ι ∘ (f ⁂ idC)) ∘ (f +₁ idC) ∘ _≅_.from nno-iso ∎ })))) ⟩ ρ ∘ extend (ι ∘ (f ⁂ idC)) ≈⟨ (refl⟩∘⟨ extend-≈ (pushˡ (sym k-identityʳ))) ⟩ ρ ∘ extend (extend ι ∘ now ∘ (f ⁂ idC)) ≈⟨ pushʳ k-assoc ⟩ (ρ ∘ extend ι) ∘ D₁ (f ⁂ idC) ≈⟨ pushˡ (Coequalizer.equality (coeqs Y)) ⟩ ρ ∘ D₁ π₁ ∘ D₁ (f ⁂ idC) ≈⟨ refl⟩∘⟨ sym D-homomorphism ⟩ ρ ∘ D₁ (π₁ ∘ (f ⁂ idC)) ≈⟨ (refl⟩∘⟨ (D-resp-≈ project₁)) ⟩ ρ ∘ D₁ (f ∘ π₁) ≈⟨ pushʳ D-homomorphism ⟩ (ρ ∘ D₁ f) ∘ D₁ π₁ ∎) where open Coequalizer (coeqs X) using (coequalize; equality) renaming (universal to coeq-universal) ρ-natural : NaturalTransformation D-Functor Ď-Functor ρ-natural = ntHelper (record { η = λ X → ρ {X} ; commute = λ {X} {Y} f → Coequalizer.universal (coeqs X) })