module Monad.PreElgot {o ℓ e} (ambient : Ambient o ℓ e) where
open Ambient ambient
open HomReasoning
open MR C
open Equiv
open import Algebra.Elgot cocartesian
(strong) pre-Elgot monads
record IsPreElgot (T : Monad C) : Set (o ⊔ ℓ ⊔ e) where
open Monad T
open RMonad (Monad⇒Kleisli C T) using (extend)
open Functor F renaming (F₀ to T₀; F₁ to T₁)
field
elgotalgebras : ∀ {X} → Elgot-Algebra-on (T₀ X)
module elgotalgebras {X} = Elgot-Algebra-on (elgotalgebras {X})
field
extend-preserves : ∀ {X Y Z} (f : Z ⇒ T₀ X + Z) (h : X ⇒ T₀ Y)
→ elgotalgebras._# ((extend h +₁ idC) ∘ f) ≈ extend h ∘ elgotalgebras._# {X} f
record PreElgotMonad : Set (o ⊔ ℓ ⊔ e) where
field
T : Monad C
isPreElgot : IsPreElgot T
open IsPreElgot isPreElgot public
record IsStrongPreElgot (SM : StrongMonad monoidal) : Set (o ⊔ ℓ ⊔ e) where
open StrongMonad SM using (M; strengthen)
open Monad M using (F)
field
preElgot : IsPreElgot M
open IsPreElgot preElgot public
field
strengthen-preserves : ∀ {X Y Z} (f : Z ⇒ F.₀ Y + Z)
→ strengthen.η (X , Y) ∘ (idC ⁂ elgotalgebras._# f) ≈ elgotalgebras._# ((strengthen.η (X , Y) +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ f))
record StrongPreElgotMonad : Set (o ⊔ ℓ ⊔ e) where
field
SM : StrongMonad monoidal
isStrongPreElgot : IsStrongPreElgot SM
open IsStrongPreElgot isStrongPreElgot public