{-# OPTIONS --without-K --safe #-}
open import Level
open import Categories.Category using (Category)

module Categories.NaturalTransformation.Hom {o  e : Level} (C : Category o  e) where

open import Categories.Category.Instance.Setoids
open import Categories.Functor.Hom using (module Hom; Hom[_][-,_]; Hom[_][_,-]; Hom[_][-,-])
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) renaming (id to idN)

import Categories.Morphism.Reasoning as MR

open Category C
open HomReasoning
open MR C
open NaturalTransformation
private
  module CE = Category.Equiv C
  module C = Category C

Hom[A,C]⇒Hom[B,C] : {A B : Obj}  (A  B)  NaturalTransformation Hom[ C ][-, A ] Hom[ C ][-, B ]
Hom[A,C]⇒Hom[B,C] {A} A⇒B = ntHelper record
  { η       = λ X  record { _⟨$⟩_ = λ X⇒A  A⇒B  X⇒A ; cong = ∘-resp-≈ʳ }
  ; commute = λ f {g} {h} g≈h  begin
      A⇒B  id  g  f   ≈⟨ sym-assoc 
      (A⇒B  id)  g  f ≈⟨ id-comm ⟩∘⟨ g≈h ⟩∘⟨refl 
      (id  A⇒B)  h  f ≈⟨ pullʳ sym-assoc 
      id  (A⇒B  h)  f 
  }

Hom[C,A]⇒Hom[C,B] : {A B : Obj}  (B  A)  NaturalTransformation Hom[ C ][ A ,-] Hom[ C ][ B ,-]
Hom[C,A]⇒Hom[C,B] {A} B⇒A = ntHelper record
  { η = λ X  record { _⟨$⟩_ = λ A⇒X  A⇒X  B⇒A ; cong = ∘-resp-≈ˡ }
  ; commute = λ f {g} {h} g≈h  begin
      (f  g  id)  B⇒A ≈⟨ pullʳ assoc 
      f  g  id  B⇒A   ≈⟨ (refl⟩∘⟨ g≈h ⟩∘⟨ id-comm-sym) 
      f  h  B⇒A  id   ≈⟨ (refl⟩∘⟨ sym-assoc) 
      f  (h  B⇒A)  id 
  }