{-# OPTIONS --without-K --safe #-}
module Categories.NaturalTransformation.Properties where
open import Level
open import Data.Product using (Σ; _,_)
open import Function.Equality using (Π)
open import Categories.Category
open import Categories.Category.Product
open import Categories.Category.Instance.Setoids
open import Categories.Functor
open import Categories.Functor.Construction.Constant
open import Categories.Functor.Construction.LiftSetoids
open import Categories.Functor.Bifunctor
open import Categories.NaturalTransformation renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.NaturalTransformation.Dinatural hiding (_≃_)
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ ℓ′ e : Level
C D E : Category o ℓ e
module _ {F G : Functor C D} where
private
module C = Category C
module D = Category D
open D
open MR D
open HomReasoning
open Functor
F′ : Bifunctor C.op C D
F′ = F ∘F πʳ
G′ : Bifunctor C.op C D
G′ = G ∘F πʳ
NT⇒Dinatural : NaturalTransformation F G → DinaturalTransformation F′ G′
NT⇒Dinatural β = dtHelper record
{ α = η
; commute = λ f → ∘-resp-≈ʳ (elimʳ (identity F)) ○ ⟺ (commute f) ○ introˡ (identity G)
}
where open NaturalTransformation β
Dinatural⇒NT : DinaturalTransformation F′ G′ → NaturalTransformation F G
Dinatural⇒NT θ = ntHelper record
{ η = α
; commute = λ f → introˡ (identity G) ○ ⟺ (commute f) ○ ∘-resp-≈ʳ (elimʳ (identity F))
}
where open DinaturalTransformation θ
replaceˡ : ∀ {F′} → NaturalTransformation F G → F ≃ F′ → NaturalTransformation F′ G
replaceˡ {F′} α F≃F′ = ntHelper record
{ η = λ X → η X ∘ ⇐.η X
; commute = λ {X Y} f → begin
(η Y ∘ ⇐.η Y) ∘ F₁ F′ f ≈⟨ pullʳ (⇐.commute f) ⟩
η Y ∘ F₁ F f ∘ ⇐.η X ≈⟨ pullˡ (commute f) ○ assoc ⟩
F₁ G f ∘ η X ∘ ⇐.η X ∎
}
where open NaturalIsomorphism F≃F′
open NaturalTransformation α
replaceʳ : ∀ {G′} → NaturalTransformation F G → G ≃ G′ → NaturalTransformation F G′
replaceʳ {G′} α G≃G′ = ntHelper record
{ η = λ X → ⇒.η X ∘ η X
; commute = λ {X Y} f → begin
(⇒.η Y ∘ η Y) ∘ F₁ F f ≈⟨ pullʳ (commute f) ⟩
⇒.η Y ∘ F₁ G f ∘ η X ≈⟨ pullˡ (⇒.commute f) ○ assoc ⟩
F₁ G′ f ∘ ⇒.η X ∘ η X ∎
}
where open NaturalIsomorphism G≃G′
open NaturalTransformation α
module _ (F : Bifunctor C D E) where
appˡ-nat : ∀ {X Y} → (f : Category._⇒_ C X Y) → NaturalTransformation (appˡ F X) (appˡ F Y)
appˡ-nat f = F ∘ˡ (constNat f ※ⁿ idN)
appʳ-nat : ∀ {X Y} → (f : Category._⇒_ D X Y) → NaturalTransformation (appʳ F X) (appʳ F Y)
appʳ-nat f = F ∘ˡ (idN ※ⁿ constNat f)
module _ {F G : Bifunctor C D E} (α : NaturalTransformation F G) where
private
module C = Category C
module D = Category D
module E = Category E
appˡ′ : ∀ X → NaturalTransformation (appˡ F X) (appˡ G X)
appˡ′ X = α ∘ₕ idN
appʳ′ : ∀ X → NaturalTransformation (appʳ F X) (appʳ G X)
appʳ′ X = α ∘ₕ idN
module _ {c ℓ ℓ′ e} {F G : Functor C (Setoids c ℓ)} (α : NaturalTransformation (LiftSetoids ℓ′ e ∘F F) (LiftSetoids ℓ′ e ∘F G)) where
open NaturalTransformation α
open Π
unlift-nat : NaturalTransformation F G
unlift-nat = ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ x → lower (η X ⟨$⟩ lift x)
; cong = λ eq → lower (cong (η X) (lift eq))
}
; commute = λ f eq → lower (commute f (lift eq))
}