{-# OPTIONS --without-K --safe #-}
module Categories.Adjoint.Equivalents where
open import Level
open import Data.Product using (_,_; _×_)
open import Function using (_$_) renaming (_∘_ to _∙_)
open import Function.Equality using (Π; _⟶_)
import Function.Inverse as FI
open import Relation.Binary using (Rel; IsEquivalence; Setoid)
open import Categories.Adjoint using (Adjoint; _⊣_)
open import Categories.Category.Core using (Category)
open import Categories.Category.Product using (Product; _⁂_)
open import Categories.Category.Instance.Setoids
open import Categories.Morphism
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Functor.Bifunctor using (Bifunctor)
open import Categories.Functor.Hom using (Hom[_][-,-])
open import Categories.Functor.Construction.LiftSetoids
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper; _∘ₕ_; _∘ᵥ_; _∘ˡ_; _∘ʳ_)
renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (NaturalIsomorphism; unitorˡ; unitorʳ; associator; _≃_)
import Categories.Morphism.Reasoning as MR
private
variable
o o′ o″ ℓ ℓ′ ℓ″ e e′ e″ : Level
C D E : Category o ℓ e
module _ {C : Category o ℓ e} {D : Category o′ ℓ e} {L : Functor C D} {R : Functor D C} where
private
module C = Category C
module D = Category D
module L = Functor L
module R = Functor R
module _ (adjoint : L ⊣ R) where
open Adjoint adjoint
Hom-NI′ : NaturalIsomorphism Hom[L-,-] Hom[-,R-]
Hom-NI′ = record
{ F⇒G = ntHelper record
{ η = λ _ → Hom-inverse.to
; commute = λ _ eq → Ladjunct-comm eq
}
; F⇐G = ntHelper record
{ η = λ _ → Hom-inverse.from
; commute = λ _ eq → Radjunct-comm eq
}
; iso = λ _ → record
{ isoˡ = λ eq → let open D.HomReasoning in RLadjunct≈id ○ eq
; isoʳ = λ eq → let open C.HomReasoning in LRadjunct≈id ○ eq
}
}
private
Hom[L-,-] : Bifunctor C.op D (Setoids _ _)
Hom[L-,-] = Hom[ D ][-,-] ∘F (L.op ⁂ idF)
Hom[-,R-] : Bifunctor C.op D (Setoids _ _)
Hom[-,R-] = Hom[ C ][-,-] ∘F (idF ⁂ R)
module _ (Hni : NaturalIsomorphism Hom[L-,-] Hom[-,R-]) where
open NaturalIsomorphism Hni
open NaturalTransformation
open Functor
open Π
private
unitη : ∀ X → F₀ Hom[L-,-] (X , L.F₀ X) ⟶ F₀ Hom[-,R-] (X , L.F₀ X)
unitη X = ⇒.η (X , L.F₀ X)
unit : NaturalTransformation idF (R ∘F L)
unit = ntHelper record
{ η = λ X → unitη X ⟨$⟩ D.id
; commute = λ {X} {Y} f → begin
(unitη Y ⟨$⟩ D.id) ∘ f ≈⟨ introˡ R.identity ⟩
R.F₁ D.id ∘ (unitη Y ⟨$⟩ D.id) ∘ f ≈˘⟨ ⇒.commute (f , D.id) D.Equiv.refl ⟩
⇒.η (X , L.F₀ Y) ⟨$⟩ (D.id D.∘ D.id D.∘ L.F₁ f) ≈⟨ cong (⇒.η (X , L.F₀ Y)) (D.Equiv.trans D.identityˡ D.identityˡ) ⟩
⇒.η (X , L.F₀ Y) ⟨$⟩ L.F₁ f ≈⟨ cong (⇒.η (X , L.F₀ Y)) (MR.introʳ D (MR.elimʳ D L.identity)) ⟩
⇒.η (X , L.F₀ Y) ⟨$⟩ (L.F₁ f D.∘ D.id D.∘ L.F₁ id) ≈⟨ ⇒.commute (C.id , L.F₁ f) D.Equiv.refl ⟩
R.F₁ (L.F₁ f) ∘ (unitη X ⟨$⟩ D.id) ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩
R.F₁ (L.F₁ f) ∘ (unitη X ⟨$⟩ D.id) ∎
}
where open C
open HomReasoning
open MR C
counitη : ∀ X → F₀ Hom[-,R-] (R.F₀ X , X) ⟶ F₀ Hom[L-,-] (R.F₀ X , X)
counitη X = ⇐.η (R.F₀ X , X)
counit : NaturalTransformation (L ∘F R) idF
counit = ntHelper record
{ η = λ X → counitη X ⟨$⟩ C.id
; commute = λ {X} {Y} f → begin
(counitη Y ⟨$⟩ C.id) ∘ L.F₁ (R.F₁ f) ≈˘⟨ identityˡ ⟩
id ∘ (counitη Y ⟨$⟩ C.id) ∘ L.F₁ (R.F₁ f) ≈˘⟨ ⇐.commute (R.F₁ f , D.id) C.Equiv.refl ⟩
⇐.η (R.F₀ X , Y) ⟨$⟩ (R.F₁ id C.∘ C.id C.∘ R.F₁ f) ≈⟨ cong (⇐.η (R.F₀ X , Y)) (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ) ⟩
⇐.η (R.F₀ X , Y) ⟨$⟩ R.F₁ f ≈⟨ cong (⇐.η (R.F₀ X , Y)) (MR.introʳ C C.identityˡ) ⟩
⇐.η (R.F₀ X , Y) ⟨$⟩ (R.F₁ f C.∘ C.id C.∘ C.id) ≈⟨ ⇐.commute (C.id , f) C.Equiv.refl ⟩
f ∘ (counitη X ⟨$⟩ C.id) ∘ L.F₁ C.id ≈⟨ refl⟩∘⟨ elimʳ L.identity ⟩
f ∘ (counitη X ⟨$⟩ C.id) ∎
}
where open D
open HomReasoning
open MR D
Hom-NI⇒Adjoint : L ⊣ R
Hom-NI⇒Adjoint = record
{ unit = unit
; counit = counit
; zig = λ {A} →
let open D
open HomReasoning
open Equiv
open MR D
in begin
η counit (L.F₀ A) ∘ L.F₁ (η unit A) ≈˘⟨ identityˡ ⟩
id ∘ η counit (L.F₀ A) ∘ L.F₁ (η unit A) ≈˘⟨ ⇐.commute (η unit A , id) C.Equiv.refl ⟩
⇐.η (A , L.F₀ A) ⟨$⟩ (R.F₁ id C.∘ C.id C.∘ η unit A)
≈⟨ cong (⇐.η (A , L.F₀ A)) (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ) ⟩
⇐.η (A , L.F₀ A) ⟨$⟩ η unit A ≈⟨ isoˡ refl ⟩
id
∎
; zag = λ {B} →
let open C
open HomReasoning
open Equiv
open MR C
in begin
R.F₁ (η counit B) ∘ η unit (R.F₀ B) ≈˘⟨ refl⟩∘⟨ identityʳ ⟩
R.F₁ (η counit B) ∘ η unit (R.F₀ B) ∘ id ≈˘⟨ ⇒.commute (id , η counit B) D.Equiv.refl ⟩
⇒.η (R.F₀ B , B) ⟨$⟩ (η counit B D.∘ D.id D.∘ L.F₁ id)
≈⟨ cong (⇒.η (R.F₀ B , B)) (MR.elimʳ D (MR.elimʳ D L.identity)) ⟩
⇒.η (R.F₀ B , B) ⟨$⟩ η counit B ≈⟨ isoʳ refl ⟩
id ∎
}
where module i {X} = Iso (iso X)
open i
module _ {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {L : Functor C D} {R : Functor D C} where
private
module C = Category C
module D = Category D
module L = Functor L
module R = Functor R
open Functor
open Π
Hom[L-,-] : Bifunctor C.op D (Setoids _ _)
Hom[L-,-] = LiftSetoids ℓ e ∘F Hom[ D ][-,-] ∘F (L.op ⁂ idF)
Hom[-,R-] : Bifunctor C.op D (Setoids _ _)
Hom[-,R-] = LiftSetoids ℓ′ e′ ∘F Hom[ C ][-,-] ∘F (idF ⁂ R)
module _ (Hni : Hom[L-,-] ≃ Hom[-,R-]) where
open NaturalIsomorphism Hni using (module ⇒; module ⇐; iso)
private
unitη : ∀ X → F₀ Hom[L-,-] (X , L.F₀ X) ⟶ F₀ Hom[-,R-] (X , L.F₀ X)
unitη X = ⇒.η (X , L.F₀ X)
unit : NaturalTransformation idF (R ∘F L)
unit = ntHelper record
{ η = λ X → lower (unitη X ⟨$⟩ lift D.id)
; commute = λ {X Y} f → begin
lower (unitη Y ⟨$⟩ lift D.id) ∘ f
≈⟨ introˡ R.identity ⟩
R.F₁ D.id ∘ lower (unitη Y ⟨$⟩ lift D.id) ∘ f
≈˘⟨ lower (⇒.commute (f , D.id) (lift D.Equiv.refl)) ⟩
lower (⇒.η (X , L.F₀ Y) ⟨$⟩ lift (D.id D.∘ D.id D.∘ L.F₁ f))
≈⟨ lower (cong (⇒.η (X , L.F₀ Y)) (lift (D.Equiv.trans D.identityˡ D.identityˡ))) ⟩
lower (⇒.η (X , L.F₀ Y) ⟨$⟩ lift (L.F₁ f))
≈⟨ lower (cong (⇒.η (X , L.F₀ Y)) (lift (MR.introʳ D (MR.elimʳ D L.identity)))) ⟩
lower (⇒.η (X , L.F₀ Y) ⟨$⟩ lift (L.F₁ f D.∘ D.id D.∘ L.F₁ id))
≈⟨ lower (⇒.commute (C.id , L.F₁ f) (lift D.Equiv.refl)) ⟩
R.F₁ (L.F₁ f) ∘ lower (⇒.η (X , L.F₀ X) ⟨$⟩ lift D.id) ∘ id
≈⟨ refl⟩∘⟨ identityʳ ⟩
F₁ (R ∘F L) f ∘ lower (unitη X ⟨$⟩ lift D.id) ∎
}
where open C
open HomReasoning
open MR C
counitη : ∀ X → F₀ Hom[-,R-] (R.F₀ X , X) ⟶ F₀ Hom[L-,-] (R.F₀ X , X)
counitη X = ⇐.η (R.F₀ X , X)
counit : NaturalTransformation (L ∘F R) idF
counit = ntHelper record
{ η = λ X → lower (counitη X ⟨$⟩ lift C.id)
; commute = λ {X} {Y} f → begin
lower (⇐.η (R.F₀ Y , Y) ⟨$⟩ lift C.id) ∘ L.F₁ (R.F₁ f)
≈˘⟨ identityˡ ⟩
id ∘ lower (⇐.η (R.F₀ Y , Y) ⟨$⟩ lift C.id) ∘ L.F₁ (R.F₁ f)
≈˘⟨ lower (⇐.commute (R.F₁ f , D.id) (lift C.Equiv.refl)) ⟩
lower (⇐.η (R.F₀ X , Y) ⟨$⟩ lift (R.F₁ id C.∘ C.id C.∘ R.F₁ f))
≈⟨ lower (cong (⇐.η (R.F₀ X , Y)) (lift (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ))) ⟩
lower (⇐.η (R.F₀ X , Y) ⟨$⟩ lift (R.F₁ f))
≈⟨ lower (cong (⇐.η (R.F₀ X , Y)) (lift (MR.introʳ C C.identityˡ))) ⟩
lower (⇐.η (R.F₀ X , Y) ⟨$⟩ lift (R.F₁ f C.∘ C.id C.∘ C.id))
≈⟨ lower (⇐.commute (C.id , f) (lift C.Equiv.refl)) ⟩
f ∘ lower (⇐.η (R.F₀ X , X) ⟨$⟩ lift C.id) ∘ L.F₁ C.id
≈⟨ refl⟩∘⟨ elimʳ L.identity ⟩
f ∘ lower (⇐.η (R.F₀ X , X) ⟨$⟩ lift C.id)
∎
}
where open D
open HomReasoning
open MR D
Hom-NI′⇒Adjoint : L ⊣ R
Hom-NI′⇒Adjoint = record
{ unit = unit
; counit = counit
; zig = λ {A} →
let open D
open HomReasoning
open Equiv
open MR D
in begin
lower (counitη (L.F₀ A) ⟨$⟩ lift C.id) ∘ L.F₁ (η unit A)
≈˘⟨ identityˡ ⟩
id ∘ lower (counitη (L.F₀ A) ⟨$⟩ lift C.id) ∘ L.F₁ (η unit A)
≈˘⟨ lower (⇐.commute (η unit A , id) (lift C.Equiv.refl)) ⟩
lower (⇐.η (A , L.F₀ A) ⟨$⟩ lift (R.F₁ id C.∘ C.id C.∘ lower (⇒.η (A , L.F₀ A) ⟨$⟩ lift id)))
≈⟨ lower (cong (⇐.η (A , L.F₀ A)) (lift (C.Equiv.trans (MR.elimˡ C R.identity) C.identityˡ))) ⟩
lower (⇐.η (A , L.F₀ A) ⟨$⟩ (⇒.η (A , L.F₀ A) ⟨$⟩ lift id))
≈⟨ lower (isoˡ (lift refl)) ⟩
id ∎
; zag = λ {B} →
let open C
open HomReasoning
open Equiv
open MR C
in begin
R.F₁ (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id)) ∘ lower (⇒.η (R.F₀ B , L.F₀ (R.F₀ B)) ⟨$⟩ lift D.id)
≈˘⟨ refl⟩∘⟨ identityʳ ⟩
R.F₁ (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id)) ∘ lower (⇒.η (R.F₀ B , L.F₀ (R.F₀ B)) ⟨$⟩ lift D.id) ∘ id
≈˘⟨ lower (⇒.commute (id , η counit B) (lift D.Equiv.refl)) ⟩
lower (⇒.η (R.F₀ B , B) ⟨$⟩ lift (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id) D.∘ D.id D.∘ L.F₁ id))
≈⟨ lower (cong (⇒.η (R.F₀ B , B)) (lift (MR.elimʳ D (MR.elimʳ D L.identity)))) ⟩
lower (⇒.η (R.F₀ B , B) ⟨$⟩ lift (lower (⇐.η (R.F₀ B , B) ⟨$⟩ lift id)))
≈⟨ lower (isoʳ (lift refl)) ⟩
id ∎
}
where open NaturalTransformation
module _ {X} where
open Iso (iso X) public