{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Comma where
open import Data.Product using (_×_; ∃; _,_; proj₁; proj₂; zip; map)
open import Level
open import Relation.Binary using (Rel)
open import Categories.Category.Instance.One
open import Categories.Category using (Category; _[_,_]; _[_∘_]; module Definitions)
open import Categories.Functor using (Functor)
open import Categories.Functor.Construction.Constant using (const!)
import Categories.Morphism.Reasoning.Core as MR
private
variable
o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ o₃ ℓ₃ e₃ : Level
module _ {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂} {C : Category o₃ ℓ₃ e₃} where
private
module C = Category C
module A = Category A
module B = Category B
record CommaObj (T : Functor A C) (S : Functor B C) : Set (o₁ ⊔ o₂ ⊔ ℓ₃) where
open Category
open Functor T renaming (F₀ to T₀)
open Functor S renaming (F₀ to S₀)
field
{α} : Obj A
{β} : Obj B
f : C [ T₀ α , S₀ β ]
record Comma⇒ {T : Functor A C} {S : Functor B C} (X₁ X₂ : CommaObj T S) : Set (ℓ₁ ⊔ ℓ₂ ⊔ e₃) where
open CommaObj X₁ renaming (α to α₁; β to β₁; f to f₁)
open CommaObj X₂ renaming (α to α₂; β to β₂; f to f₂)
open Functor T renaming (F₁ to T₁)
open Functor S renaming (F₁ to S₁)
open Definitions C
field
g : A [ α₁ , α₂ ]
h : B [ β₁ , β₂ ]
commute : CommutativeSquare f₁ (T₁ g) (S₁ h) f₂
Comma : Functor A C → Functor B C → Category _ _ _
Comma T S = record
{ Obj = CommaObj T S
; _⇒_ = Comma⇒
; _≈_ = λ a₁ a₂ → g a₁ A.≈ g a₂ × h a₁ B.≈ h a₂
; _∘_ = _∘′_
; id = record { g = A.id ; h = B.id ; commute = id-comm }
; assoc = A.assoc , B.assoc
; sym-assoc = A.sym-assoc , B.sym-assoc
; identityˡ = A.identityˡ , B.identityˡ
; identityʳ = A.identityʳ , B.identityʳ
; identity² = A.identity² , B.identity²
; equiv = record
{ refl = A.Equiv.refl , B.Equiv.refl
; sym = map A.Equiv.sym B.Equiv.sym
; trans = zip A.Equiv.trans B.Equiv.trans
}
; ∘-resp-≈ = zip A.∘-resp-≈ B.∘-resp-≈
} module Comma
where
module T = Functor T
module S = Functor S
open T using () renaming (F₀ to T₀; F₁ to T₁)
open S using () renaming (F₀ to S₀; F₁ to S₁)
open Comma⇒
id-comm : {E : CommaObj T S} → let open CommaObj E in
S₁ B.id C.∘ f C.≈ f C.∘ T₁ A.id
id-comm {E} = begin
S₁ B.id C.∘ f ≈⟨ elimˡ S.identity ⟩
f ≈⟨ introʳ T.identity ⟩
f C.∘ T₁ A.id ∎
where
open C.HomReasoning
open CommaObj E
open MR C
_∘′_ : ∀ {X₁ X₂ X₃} → Comma⇒ X₂ X₃ → Comma⇒ X₁ X₂ → Comma⇒ X₁ X₃
_∘′_ {X₁} {X₂} {X₃} a₁ a₂ = record
{ g = A [ g₁ ∘ g₂ ]
; h = B [ h₁ ∘ h₂ ]
; commute = begin
S₁ (h₁ B.∘ h₂) C.∘ f₁ ≈⟨ S.homomorphism ⟩∘⟨refl ⟩
(S₁ h₁ C.∘ S₁ h₂) C.∘ f₁ ≈⟨ glue commutes₁ commutes₂ ⟩
f₃ C.∘ (T₁ g₁ C.∘ T₁ g₂) ≈˘⟨ refl⟩∘⟨ T.homomorphism ⟩
f₃ C.∘ T₁ (g₁ A.∘ g₂) ∎
}
where
open C.HomReasoning
open MR C
open Comma⇒ a₁ renaming (g to g₁; h to h₁; commute to commutes₁)
open Comma⇒ a₂ renaming (g to g₂; h to h₂; commute to commutes₂)
open CommaObj X₁ renaming (f to f₁)
open CommaObj X₂ renaming (f to f₂)
open CommaObj X₃ renaming (f to f₃)
infix 4 _↓_
_↓_ : (S : Functor A C) (T : Functor B C) → Category _ _ _
S ↓ T = Comma S T
Dom : (T : Functor A C) → (S : Functor B C) → Functor (Comma T S) A
Dom T S = record
{ F₀ = CommaObj.α
; F₁ = Comma⇒.g
; identity = refl
; homomorphism = refl
; F-resp-≈ = proj₁
}
where
open Comma T S
open A.Equiv
Cod : (T : Functor A C) → (S : Functor B C) → Functor (Comma T S) B
Cod T S = record
{ F₀ = CommaObj.β
; F₁ = Comma⇒.h
; identity = refl
; homomorphism = refl
; F-resp-≈ = proj₂
}
where
open Comma T S
open B.Equiv
module _ {C : Category o₁ ℓ₁ e₁} {D : Category o₂ ℓ₂ e₂} where
private
module C = Category C
infix 4 _↙_ _↘_
_↙_ : (X : C.Obj) (T : Functor D C) → Category _ _ _
X ↙ T = const! X ↓ T
_↘_ : (S : Functor D C) (X : C.Obj) → Category _ _ _
S ↘ X = S ↓ const! X