{-# OPTIONS --without-K --safe #-}
open import Level
open import Categories.Category using (Category; _[_,_])
module Categories.Yoneda.Properties {o ℓ e : Level} (C : Category o ℓ e) where
open import Function.Base using (_$_)
open import Function.Bundles using (Inverse)
open import Function.Equality using (Π; _⟨$⟩_; cong)
open import Relation.Binary.Bundles using (module Setoid)
import Relation.Binary.Reasoning.Setoid as SetoidR
open import Data.Product using (_,_; Σ)
open import Categories.Category.Product
open import Categories.Category.Construction.Presheaves
open import Categories.Category.Construction.Functors
open import Categories.Category.Instance.Setoids
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Properties using (Full; Faithful; FullyFaithful)
open import Categories.Functor.Hom using (module Hom; Hom[_][-,_]; Hom[_][-,-])
open import Categories.Functor.Bifunctor
open import Categories.Functor.Presheaf
open import Categories.Functor.Construction.LiftSetoids
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism)
open import Categories.Yoneda
import Categories.Morphism as Mor
import Categories.Morphism.Reasoning as MR
import Categories.NaturalTransformation.Hom as NT-Hom
open Category C using (module HomReasoning; id; _∘_; identityˡ; identityʳ; Obj; ∘-resp-≈ˡ; ∘-resp-≈ʳ)
open HomReasoning
open NaturalTransformation using (η; commute)
open Yoneda C using (embed; yoneda-inverse; module yoneda)
private
module CE = Category.Equiv C using (refl)
module C = Category C using (op; id)
YoFull : Full embed
YoFull {X} {Y} = record
{ from = record { _⟨$⟩_ = λ ε → η ε X ⟨$⟩ id ; cong = λ i≈j → i≈j CE.refl }
; right-inverse-of = λ ε {x} {z} {y} z≈y →
begin
(η ε X ⟨$⟩ id) ∘ z ≈˘⟨ identityˡ ⟩
id ∘ (η ε X ⟨$⟩ id) ∘ z ≈˘⟨ commute ε z CE.refl ⟩
η ε x ⟨$⟩ id ∘ id ∘ z ≈⟨ cong (η ε x) (identityˡ ○ identityˡ ○ z≈y) ⟩
η ε x ⟨$⟩ y ∎
}
YoFaithful : Faithful embed
YoFaithful f g pres-≈ = begin
f ≈˘⟨ identityʳ ⟩
f ∘ id ≈⟨ pres-≈ CE.refl ⟩
g ∘ id ≈⟨ identityʳ ⟩
g ∎
YoFullyFaithful : FullyFaithful embed
YoFullyFaithful = YoFull , YoFaithful
open Mor C using (_≅_)
yoneda-iso : ∀ {A B : Obj} → NaturalIsomorphism Hom[ C ][-, A ] Hom[ C ][-, B ] → A ≅ B
yoneda-iso {A} {B} niso = record
{ from = ⇒.η A ⟨$⟩ id
; to = ⇐.η B ⟨$⟩ id
; iso = record
{ isoˡ = begin
(⇐.η B ⟨$⟩ id) ∘ (⇒.η A ⟨$⟩ id) ≈˘⟨ identityˡ ⟩
id ∘ (⇐.η B ⟨$⟩ id) ∘ (⇒.η A ⟨$⟩ id) ≈⟨ B⇒A.inverseʳ F⇐G CE.refl ⟩
⇐.η A ⟨$⟩ (⇒.η A ⟨$⟩ id) ≈⟨ isoX.isoˡ CE.refl ⟩
id ∎
; isoʳ = begin
(⇒.η A ⟨$⟩ id) ∘ (⇐.η B ⟨$⟩ id) ≈˘⟨ identityˡ ⟩
id ∘ (⇒.η A ⟨$⟩ id) ∘ (⇐.η B ⟨$⟩ id) ≈⟨ A⇒B.inverseʳ F⇒G CE.refl ⟩
⇒.η B ⟨$⟩ (⇐.η B ⟨$⟩ id) ≈⟨ isoX.isoʳ CE.refl ⟩
id ∎
}
}
where
open NaturalIsomorphism niso
A⇒B = yoneda-inverse A (Functor.F₀ embed B)
B⇒A = yoneda-inverse B (Functor.F₀ embed A)
module A⇒B = Inverse A⇒B using (inverseʳ)
module B⇒A = Inverse B⇒A using (inverseʳ)
module isoX {X} = Mor.Iso (iso X) using (isoʳ; isoˡ)
module _ {o′ ℓ′ e′} {D : Category o′ ℓ′ e′} where
private
module D = Category D using (id)
module _ {F G : Functor D C} where
private
module F = Functor F using (₀; ₁; identity)
module G = Functor G using (₀; ₁; identity)
Hom[-,F-] : Bifunctor C.op D (Setoids ℓ e)
Hom[-,F-] = Hom[ C ][-,-] ∘F (idF ⁂ F)
Hom[-,G-] : Bifunctor C.op D (Setoids ℓ e)
Hom[-,G-] = Hom[ C ][-,-] ∘F (idF ⁂ G)
nat-appʳ : ∀ X → NaturalTransformation Hom[-,F-] Hom[-,G-] →
NaturalTransformation Hom[ C ][-, F.₀ X ] Hom[ C ][-, G.₀ X ]
nat-appʳ X α = ntHelper record
{ η = λ Y → η α (Y , X)
; commute = λ {_ Y} f eq → cong (η α (Y , X)) (∘-resp-≈ˡ (⟺ F.identity)) ○ commute α (f , D.id) eq ○ ∘-resp-≈ˡ G.identity
}
transform : NaturalTransformation Hom[-,F-] Hom[-,G-] → NaturalTransformation F G
transform α = ntHelper record
{ η = λ X → η α (F.₀ X , X) ⟨$⟩ id
; commute = λ {X Y} f → begin
(η α (F.₀ Y , Y) ⟨$⟩ id) ∘ F.₁ f ≈˘⟨ identityˡ ⟩
id ∘ (η α (F.₀ Y , Y) ⟨$⟩ id) ∘ F.₁ f ≈˘⟨ lower (yoneda.⇒.commute {Y = Hom[ C ][-, G.₀ Y ] , _} (idN , F.₁ f) {nat-appʳ Y α} {nat-appʳ Y α} (cong (η α _))) ⟩
η α (F.₀ X , Y) ⟨$⟩ F.₁ f ∘ id ≈⟨ cong (η α (F.₀ X , Y)) (∘-resp-≈ʳ (⟺ identityˡ)) ⟩
η α (F.₀ X , Y) ⟨$⟩ F.₁ f ∘ id ∘ id ≈⟨ commute α (id , f) CE.refl ⟩
G.₁ f ∘ (η α (F.₀ X , X) ⟨$⟩ id) ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩
G.₁ f ∘ (η α (F.₀ X , X) ⟨$⟩ id) ∎
}
module _ (F G : Functor D C) where
private
module F = Functor F using (₀)
module G = Functor G using (₀)
Hom[-,F-] : Bifunctor C.op D (Setoids ℓ e)
Hom[-,F-] = Hom[ C ][-,-] ∘F (idF ⁂ F)
Hom[-,G-] : Bifunctor C.op D (Setoids ℓ e)
Hom[-,G-] = Hom[ C ][-,-] ∘F (idF ⁂ G)
yoneda-NI : NaturalIsomorphism Hom[-,F-] Hom[-,G-] → NaturalIsomorphism F G
yoneda-NI ni = record
{ F⇒G = transform F⇒G
; F⇐G = transform F⇐G
; iso = λ X → record
{ isoˡ = begin
(⇐.η (G.₀ X , X) ⟨$⟩ id) ∘ (⇒.η (F.₀ X , X) ⟨$⟩ id) ≈⟨ introˡ CE.refl ⟩
id ∘ (⇐.η (G.₀ X , X) ⟨$⟩ id) ∘ (⇒.η (F.₀ X , X) ⟨$⟩ id) ≈˘⟨ lower {e} (yoneda.⇒.commute {Y = Hom[ C ][-, F.₀ X ] , _}
(idN , (⇒.η (F.₀ X , X) ⟨$⟩ id))
{nat-appʳ {F = G} {F} X F⇐G}
{nat-appʳ {F = G} {F} X F⇐G}
(cong (⇐.η (_ , X) ))) ⟩
⇐.η (F.₀ X , X) ⟨$⟩ (⇒.η (F.₀ X , X) ⟨$⟩ id) ∘ id ≈⟨ cong (⇐.η _) identityʳ ⟩
⇐.η (F.₀ X , X) ⟨$⟩ (⇒.η (F.₀ X , X) ⟨$⟩ id) ≈⟨ iso.isoˡ _ CE.refl ⟩
id ∎
; isoʳ = begin
(⇒.η (F.₀ X , X) ⟨$⟩ id) ∘ (⇐.η (G.₀ X , X) ⟨$⟩ id) ≈⟨ introˡ CE.refl ⟩
id ∘ (⇒.η (F.₀ X , X) ⟨$⟩ id) ∘ (⇐.η (G.₀ X , X) ⟨$⟩ id) ≈˘⟨ lower {e} (yoneda.⇒.commute {Y = Hom[ C ][-, G.₀ X ] , _}
(idN , (⇐.η (G.₀ X , X) ⟨$⟩ C.id))
{nat-appʳ {F = F} {G} X F⇒G}
{nat-appʳ {F = F} {G} X F⇒G}
(cong (⇒.η _))) ⟩
⇒.η (G.₀ X , X) ⟨$⟩ (⇐.η (G.₀ X , X) ⟨$⟩ id) ∘ id ≈⟨ cong (⇒.η _) identityʳ ⟩
⇒.η (G.₀ X , X) ⟨$⟩ (⇐.η (G.₀ X , X) ⟨$⟩ id) ≈⟨ iso.isoʳ _ CE.refl ⟩
id ∎
}
}
where
open NaturalIsomorphism ni using (F⇒G; F⇐G; module ⇐; module ⇒; module iso)
open MR C using (introˡ)