This file introduces the category of Uniform-Iteration Algebras
module UniformIterationAlgebras {o ℓ e} (D : ExtensiveDistributiveCategory o ℓ e) where open ExtensiveDistributiveCategory D renaming (U to C; id to idC) open Cocartesian (Extensive.cocartesian extensive) open HomReasoning open MR C open Equiv
-- iteration preversing morphism between two elgot-algebras module _ (E₁ E₂ : Uniform-Iteration-Algebra D) where open Uniform-Iteration-Algebra E₁ renaming (_# to _#₁) open Uniform-Iteration-Algebra E₂ renaming (_# to _#₂; A to B) record Uniform-Iteration-Algebra-Morphism : Set (o ⊔ ℓ ⊔ e) where field h : A ⇒ B preserves : ∀ {X} {f : X ⇒ A + X} → h ∘ (f #₁) ≈ ((h +₁ idC) ∘ f)#₂ -- the category of uniform-iteration algebras for a given category Uniform-Iteration-Algebras : Category (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) e Uniform-Iteration-Algebras = record { Obj = Uniform-Iteration-Algebra D ; _⇒_ = Uniform-Iteration-Algebra-Morphism ; _≈_ = λ f g → Uniform-Iteration-Algebra-Morphism.h f ≈ Uniform-Iteration-Algebra-Morphism.h g ; id = λ {EB} → let open Uniform-Iteration-Algebra EB in record { h = idC; preserves = λ {X : Obj} {f : X ⇒ A + X} → begin idC ∘ f # ≈⟨ identityˡ ⟩ f # ≈⟨ #-resp-≈ (introˡ (coproduct.unique id-comm-sym id-comm-sym)) ⟩ ((idC +₁ idC) ∘ f) # ∎ } ; _∘_ = λ {EA} {EB} {EC} f g → let open Uniform-Iteration-Algebra-Morphism f renaming (h to hᶠ; preserves to preservesᶠ) open Uniform-Iteration-Algebra-Morphism g renaming (h to hᵍ; preserves to preservesᵍ) open Uniform-Iteration-Algebra EA using (A) renaming (_# to _#ᵃ) open Uniform-Iteration-Algebra EB using () renaming (_# to _#ᵇ; A to B) open Uniform-Iteration-Algebra EC using () renaming (_# to _#ᶜ; A to C; #-resp-≈ to #ᶜ-resp-≈) in record { h = hᶠ ∘ hᵍ; preserves = λ {X} {f : X ⇒ A + X} → begin (hᶠ ∘ hᵍ) ∘ (f #ᵃ) ≈⟨ pullʳ preservesᵍ ⟩ (hᶠ ∘ (((hᵍ +₁ idC) ∘ f) #ᵇ)) ≈⟨ preservesᶠ ⟩ (((hᶠ +₁ idC) ∘ (hᵍ +₁ idC) ∘ f) #ᶜ) ≈⟨ #ᶜ-resp-≈ (pullˡ (trans +₁∘+₁ (+₁-cong₂ refl (identity²)))) ⟩ ((hᶠ ∘ hᵍ +₁ idC) ∘ f) #ᶜ ∎ } ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; assoc = assoc ; sym-assoc = sym-assoc ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = ∘-resp-≈ } where open Uniform-Iteration-Algebra-Morphism