## Summary This file introduces the category of Uniform-Iteration Algebras - [X] *Definition 12* Uniform-Iteration Algebras ## Code
module UniformIterationAlgebras {o  e} (D : ExtensiveDistributiveCategory o  e) where
  open ExtensiveDistributiveCategory D renaming (U to C; id to idC)
  open Cocartesian (Extensive.cocartesian extensive)
  open HomReasoning
  open MR C
  open Equiv
### *Definition 12*: Uniform-Iteration Algebras
  -- iteration preversing morphism between two elgot-algebras
  module _ (E₁ E₂ : Uniform-Iteration-Algebra D) where
    open Uniform-Iteration-Algebra E₁ renaming (_# to _#₁)
    open Uniform-Iteration-Algebra E₂ renaming (_# to _#₂; A to B)
    record Uniform-Iteration-Algebra-Morphism : Set (o    e) where
      field
        h : A  B
        preserves :  {X} {f : X  A + X}  h  (f #₁)  ((h +₁ idC)  f)#₂

  -- the category of uniform-iteration algebras for a given category
  Uniform-Iteration-Algebras : Category (o    e) (o    e) e
  Uniform-Iteration-Algebras = record
    { Obj       = Uniform-Iteration-Algebra D
    ; _⇒_       = Uniform-Iteration-Algebra-Morphism
    ; _≈_       = λ f g  Uniform-Iteration-Algebra-Morphism.h f  Uniform-Iteration-Algebra-Morphism.h g
    ; id        = λ {EB}  let open Uniform-Iteration-Algebra EB in 
    record { h = idC; preserves = λ {X : Obj} {f : X  A + X}  begin
      idC  f #            ≈⟨ identityˡ  
      f #                  ≈⟨ #-resp-≈ (introˡ (coproduct.unique id-comm-sym id-comm-sym)) 
      ((idC +₁ idC)  f) #  }
    ; _∘_       = λ {EA} {EB} {EC} f g  let 
      open Uniform-Iteration-Algebra-Morphism f renaming (h to hᶠ; preserves to preservesᶠ)
      open Uniform-Iteration-Algebra-Morphism g renaming (h to hᵍ; preserves to preservesᵍ)
      open Uniform-Iteration-Algebra EA using (A) renaming (_# to _#ᵃ)
      open Uniform-Iteration-Algebra EB using () renaming (_# to _#ᵇ; A to B)
      open Uniform-Iteration-Algebra EC using () renaming (_# to _#ᶜ; A to C; #-resp-≈ to #ᶜ-resp-≈)
      in record { h = hᶠ  hᵍ; preserves = λ {X} {f : X  A + X}  begin 
        (hᶠ  hᵍ)  (f #ᵃ)                     ≈⟨ pullʳ preservesᵍ 
        (hᶠ  (((hᵍ +₁ idC)  f) #ᵇ))          ≈⟨ preservesᶠ  
        (((hᶠ +₁ idC)  (hᵍ +₁ idC)  f) #ᶜ)   ≈⟨ #ᶜ-resp-≈ (pullˡ (trans +₁∘+₁ (+₁-cong₂ refl (identity²))))  
        ((hᶠ  hᵍ +₁ idC)  f) #ᶜ               }
    ; identityˡ = identityˡ
    ; identityʳ = identityʳ
    ; identity² = identity²
    ; assoc     = assoc
    ; sym-assoc = sym-assoc
    ; equiv     = record
      { refl  = refl
      ; sym   = sym
      ; trans = trans
      }
    ; ∘-resp-≈  = ∘-resp-≈
    }
    where open Uniform-Iteration-Algebra-Morphism