{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Construction.LiftSetoids where
open import Level
open import Relation.Binary
open import Function.Equality
open import Function using (_$_) renaming (id to idf)
open import Categories.Category
open import Categories.Category.Instance.Setoids
open import Categories.Functor
private
variable
c ℓ : Level
LiftedSetoid : ∀ c′ ℓ′ → Setoid c ℓ → Setoid (c ⊔ c′) (ℓ ⊔ ℓ′)
LiftedSetoid c′ ℓ′ S = record
{ Carrier = Lift c′ Carrier
; _≈_ = λ where (lift x) (lift y) → Lift ℓ′ $ x ≈ y
; isEquivalence = record
{ refl = lift refl
; sym = λ where (lift eq) → lift $ sym eq
; trans = λ where (lift eq) (lift eq′) → lift $ trans eq eq′
}
}
where open Setoid S
LiftSetoids : ∀ c′ ℓ′ → Functor (Setoids c ℓ) (Setoids (c ⊔ c′) (ℓ ⊔ ℓ′))
LiftSetoids c′ ℓ′ = record
{ F₀ = LiftedSetoid c′ ℓ′
; F₁ = λ f → record
{ _⟨$⟩_ = λ where (lift x) → lift $ f ⟨$⟩ x
; cong = λ where (lift eq) → lift $ cong f eq
}
; identity = idf
; homomorphism = λ where {f = f} {g = g} (lift eq) → lift $ cong g $ cong f eq
; F-resp-≈ = λ where fx≈gy (lift x≈y) → lift $ fx≈gy x≈y
}