module Algebra.Elgot.Stable {o  e} {C : Category o  e} (distributive : Distributive C) where
  open Distributive distributive
  open import Categories.Category.Distributive.Properties distributive
  open import Algebra.Elgot cocartesian
  open import Category.Construction.ElgotAlgebras cocartesian
  open import Categories.Morphism.Properties C

  open Category C
  open Cocartesian cocartesian
  open Cartesian cartesian
  open BinaryProducts products hiding (η)
  open import Algebra.Elgot.Free cocartesian
  open Equiv
  open HomReasoning
  open MR C
  open M C

Stable free Elgot algebras have an additional universal iteration preserving morphism.

  record IsStableFreeElgotAlgebraˡ {Y : Obj} (freeElgot : FreeElgotAlgebra Y) : Set (suc o  suc   suc e) where 
    open FreeObject freeElgot using (η) renaming (FX to FY)
    open Elgot-Algebra FY using (_#)

    field
      [_,_]♯ˡ :  {X : Obj} (A : Elgot-Algebra) (f : Y × X  Elgot-Algebra.A A)  Elgot-Algebra.A FY × X  Elgot-Algebra.A A
      ♯ˡ-law :  {X : Obj} {A : Elgot-Algebra} (f : Y × X  Elgot-Algebra.A A)  f  [ A , f ]♯ˡ  (η  id)
      ♯ˡ-preserving :  {X : Obj} {B : Elgot-Algebra} (f : Y × X  Elgot-Algebra.A B) {Z : Obj} (h : Z  Elgot-Algebra.A FY + Z)  [ B , f ]♯ˡ  (h #  id)  Elgot-Algebra._# B (([ B , f ]♯ˡ +₁ id)  distributeʳ⁻¹  (h  id))
      ♯ˡ-unique :  {X : Obj} {B : Elgot-Algebra} (f : Y × X  Elgot-Algebra.A B) (g : Elgot-Algebra.A FY × X  Elgot-Algebra.A B)
         f  g  (η  id)
         ({Z : Obj} (h : Z  Elgot-Algebra.A FY + Z)  g  (h #  id)  Elgot-Algebra._# B ((g +₁ id)  distributeʳ⁻¹  (h  id)))
         g  [ B , f ]♯ˡ

  record IsStableFreeElgotAlgebra {Y : Obj} (freeElgot : FreeElgotAlgebra Y) : Set (suc o  suc   suc e) where 
    open FreeObject freeElgot using (η) renaming (FX to FY)
    open Elgot-Algebra FY using (_#)

    field
        [_,_]♯ :  {X : Obj} (A : Elgot-Algebra) (f : X × Y  Elgot-Algebra.A A)  X × Elgot-Algebra.A FY  Elgot-Algebra.A A
        ♯-law :  {X : Obj} {A : Elgot-Algebra} (f : X × Y  Elgot-Algebra.A A)  f  [ A , f ]♯  (id  η)
        ♯-preserving :  {X : Obj} {B : Elgot-Algebra} (f : X × Y  Elgot-Algebra.A B) {Z : Obj} (h : Z  Elgot-Algebra.A FY + Z)  [ B , f ]♯  (id  h #)  Elgot-Algebra._# B (([ B , f ]♯ +₁ id)  distributeˡ⁻¹  (id  h))
        ♯-unique :  {X : Obj} {B : Elgot-Algebra} (f : X × Y  Elgot-Algebra.A B) (g : X × Elgot-Algebra.A FY  Elgot-Algebra.A B)
           f  g  (id  η)
           (∀ {Z : Obj} (h : Z  Elgot-Algebra.A FY + Z)  g  (id  h #)  Elgot-Algebra._# B ((g +₁ id)  distributeˡ⁻¹  (id  h)))
           g  [ B , f ]♯

  isStable⇒isStableˡ :  {Y} (freeElgot : FreeElgotAlgebra Y)  IsStableFreeElgotAlgebra {Y} freeElgot  IsStableFreeElgotAlgebraˡ {Y} freeElgot

  IsStableFreeElgotAlgebraˡ.[_,_]♯ˡ (isStable⇒isStableˡ {Y} fe isStable) {X} A f = [ A , (f  swap) ]♯  swap 
    where open IsStableFreeElgotAlgebra isStable

  IsStableFreeElgotAlgebraˡ.♯ˡ-law (isStable⇒isStableˡ {Y} fe isStable) {X} {A} f = begin 
    f ≈⟨ introʳ swap∘swap  
    f  swap  swap ≈⟨ pullˡ (♯-law (f  swap))  
    ([ A , f  swap ]♯  (id  η))  swap ≈⟨ pullʳ (sym swap∘⁂)  
    [ A , (f  swap) ]♯  swap  (η  id) ≈⟨ sym-assoc  
    ([ A , (f  swap) ]♯  swap)  (η  id) 
    where
      open IsStableFreeElgotAlgebra isStable
      open FreeObject fe using (η) renaming (FX to FY)

  IsStableFreeElgotAlgebraˡ.♯ˡ-preserving (isStable⇒isStableˡ {Y} fe isStable) {X} {B} f {Z} h = begin 
    ([ B , (f  swap) ]♯  swap)  ((h #)  id) ≈⟨ pullʳ swap∘⁂  
    [ B , (f  swap) ]♯  (id  h #)  swap ≈⟨ pullˡ (♯-preserving (f  swap) h)  
    (([ B , (f  swap) ]♯ +₁ id)  distributeˡ⁻¹  (id  h)) #ᵇ  swap ≈⟨ sym (#ᵇ-Uniformity uni-helper)  
    ((([ B , (f  swap) ]♯  swap) +₁ id)  distributeʳ⁻¹  (h  id)) #ᵇ 
    where 
      open IsStableFreeElgotAlgebra isStable
      open FreeObject fe using (η) renaming (FX to FY)
      open Elgot-Algebra FY using (_#)
      open Elgot-Algebra B using () renaming (_# to _#ᵇ; #-Uniformity to #ᵇ-Uniformity)
      uni-helper : (id +₁ swap)  ([ B , f  swap ]♯  swap +₁ id)  distributeʳ⁻¹  (h  id)  (([ B , f  swap ]♯ coproducts.+₁ id)  distributeˡ⁻¹  (id  h))  swap
      uni-helper = begin 
        (id +₁ swap)  ([ B , f  swap ]♯  swap +₁ id)  distributeʳ⁻¹  (h  id) ≈⟨ pullˡ +₁∘+₁  
        (id  [ B , f  swap ]♯  swap +₁ swap  id)  distributeʳ⁻¹  (h  id) ≈⟨ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl 
        ([ B , f  swap ]♯  swap +₁ id  swap)  distributeʳ⁻¹  (h  id) ≈⟨ (sym +₁∘+₁) ⟩∘⟨refl 
        (([ B , f  swap ]♯ +₁ id)  (swap +₁ swap))  distributeʳ⁻¹  (h  id) ≈⟨ pullʳ (pullˡ (sym distributeˡ⁻¹∘swap)) 
        ([ B , f  swap ]♯ +₁ id)  (distributeˡ⁻¹  swap)  (h  id) ≈⟨ (refl⟩∘⟨ (pullʳ swap∘⁂  sym-assoc))  sym-assoc  
        (([ B , f  swap ]♯ +₁ id)  distributeˡ⁻¹  (id  h))  swap 

  IsStableFreeElgotAlgebraˡ.♯ˡ-unique (isStable⇒isStableˡ {Y} fe isStable) {X} {B} f g g-law g-preserving = begin 
    g ≈⟨ introʳ swap∘swap  
    g  swap  swap ≈⟨ pullˡ (♯-unique (f  swap) (g  swap) helper₁ helper₂)  
    [ B , (f  swap) ]♯  swap 
    where 
      open IsStableFreeElgotAlgebra isStable
      open FreeObject fe using (η) renaming (FX to FY)
      open Elgot-Algebra B using () renaming (_# to _#ᵇ; #-Uniformity to #ᵇ-Uniformity)
      open Elgot-Algebra FY using (_#)
      helper₁ : f  swap  (g  swap)  (id  η)
      helper₁ = begin 
        f  swap ≈⟨ g-law ⟩∘⟨refl  
        (g  (η  id))  swap ≈⟨ pullʳ (sym swap∘⁂)  
        g  swap  (id  η) ≈⟨ sym-assoc  
        (g  swap)  (id  η) 
      helper₂ :  {Z : Obj} (h : Z  Elgot-Algebra.A FY + Z)  (g  swap)  (id  h #)  ((g  swap +₁ id)  distributeˡ⁻¹  (id  h)) #ᵇ
      helper₂ {Z} h = begin 
        (g  swap)  (id  h #) ≈⟨ pullʳ swap∘⁂  
        g  (h #  id)  swap ≈⟨ pullˡ (g-preserving h)  
        ((g +₁ id)  distributeʳ⁻¹  (h  id)) #ᵇ  swap ≈⟨ sym (#ᵇ-Uniformity uni-helper)  
        ((g  swap +₁ id)  distributeˡ⁻¹  (id  h)) #ᵇ 
        where
          uni-helper : (id +₁ swap)  (g  swap +₁ id)  distributeˡ⁻¹  (id  h)  ((g +₁ id)  distributeʳ⁻¹  (h  id))  swap
          uni-helper = pullˡ +₁∘+₁  (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl  (sym +₁∘+₁) ⟩∘⟨refl  pullʳ (pullˡ (sym distributeʳ⁻¹∘swap))  (refl⟩∘⟨ (pullʳ swap∘⁂  sym-assoc))  sym-assoc

  isStableˡ⇒isStable :  {Y} (freeElgot : FreeElgotAlgebra Y)  IsStableFreeElgotAlgebraˡ {Y} freeElgot  IsStableFreeElgotAlgebra {Y} freeElgot

  IsStableFreeElgotAlgebra.[_,_]♯ (isStableˡ⇒isStable {Y} fe isStableˡ) {X} A f = [ A , f  swap ]♯ˡ  swap
    where open IsStableFreeElgotAlgebraˡ isStableˡ

  IsStableFreeElgotAlgebra.♯-law (isStableˡ⇒isStable {Y} fe isStableˡ) {X} {A} f = begin 
    f ≈⟨ introʳ swap∘swap  
    f  swap  swap ≈⟨ pullˡ (♯ˡ-law (f  swap))  
    ([ A , f  swap ]♯ˡ  (η  id))  swap ≈⟨ (pullʳ (sym swap∘⁂))  sym-assoc  
    ([ A , (f  swap) ]♯ˡ  swap)  (id  η) 
    where 
      open IsStableFreeElgotAlgebraˡ isStableˡ
      open FreeObject fe using (η) renaming (FX to FY)

  IsStableFreeElgotAlgebra.♯-preserving (isStableˡ⇒isStable {Y} fe isStableˡ) {X} {B} f {Z} h = begin 
    ([ B , (f  swap) ]♯ˡ  swap)  (id  h #) ≈⟨ pullʳ swap∘⁂  
    [ B , (f  swap) ]♯ˡ  ((h #)  id)  swap ≈⟨ pullˡ (♯ˡ-preserving (f  swap) h)  
    (([ B , (f  swap) ]♯ˡ +₁ id)  distributeʳ⁻¹  (h  id)) #ᵇ  swap ≈˘⟨ #ᵇ-Uniformity by-uni  
    (((([ B , (f  swap) ]♯ˡ  swap) +₁ id)  distributeˡ⁻¹  (id  h)) #ᵇ) 
    where 
      open IsStableFreeElgotAlgebraˡ isStableˡ
      open FreeObject fe using (η) renaming (FX to FY)
      open Elgot-Algebra B using () renaming (_# to _#ᵇ; #-Uniformity to #ᵇ-Uniformity)
      open Elgot-Algebra FY using (_#)
      by-uni : (id +₁ swap)  ([ B , f  swap ]♯ˡ  swap +₁ id)  distributeˡ⁻¹  (id  h)  (([ B , f  swap ]♯ˡ +₁ id)  distributeʳ⁻¹  (h  id))  swap
      by-uni = begin 
        (id +₁ swap)  ([ B , f  swap ]♯ˡ  swap +₁ id)  distributeˡ⁻¹  (id  h) ≈⟨ pullˡ +₁∘+₁  
        (id  [ B , f  swap ]♯ˡ  swap +₁ swap  id)  distributeˡ⁻¹  (id  h) ≈⟨ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl  
        ([ B , f  swap ]♯ˡ  swap +₁ id  swap)  distributeˡ⁻¹  (id  h) ≈⟨ (sym +₁∘+₁) ⟩∘⟨refl  
        (([ B , f  swap ]♯ˡ +₁ id)  (swap +₁ swap))  distributeˡ⁻¹  (id  h) ≈⟨ pullʳ (pullˡ (sym distributeʳ⁻¹∘swap)) 
        ([ B , f  swap ]♯ˡ +₁ id)  (distributeʳ⁻¹  swap)  (id  h) ≈⟨ refl⟩∘⟨ (pullʳ swap∘⁂)  
        ([ B , f  swap ]♯ˡ +₁ id)  distributeʳ⁻¹  (h  id)  swap ≈˘⟨ assoc  refl⟩∘⟨ assoc  
        (([ B , f  swap ]♯ˡ +₁ id)  distributeʳ⁻¹  (h  id))  swap 

  IsStableFreeElgotAlgebra.♯-unique (isStableˡ⇒isStable {Y} fe isStableˡ) {X} {B} f g g-law g-preserving = begin 
    g ≈⟨ introʳ swap∘swap  
    g  swap  swap ≈⟨ pullˡ (♯ˡ-unique (f  swap) (g  swap) helper₁ helper₂)  
    [ B , f  swap ]♯ˡ  swap 
    where 
      open IsStableFreeElgotAlgebraˡ isStableˡ
      open FreeObject fe using (η) renaming (FX to FY)
      open Elgot-Algebra B using () renaming (_# to _#ᵇ; #-Uniformity to #ᵇ-Uniformity)
      open Elgot-Algebra FY using (_#)
      helper₁ : f  swap  (g  swap)  (η  id)
      helper₁ = begin 
        f  swap ≈⟨ g-law ⟩∘⟨refl  
        (g  (id  η))  swap ≈⟨ pullʳ (sym swap∘⁂)  
        g  swap  (η  id) ≈⟨ sym-assoc  
        (g  swap)  (η  id) 
      helper₂ :  {Z : Obj} (h : Z  Elgot-Algebra.A FY + Z)  (g  swap)  (h #  id)  ((g  swap +₁ id)  distributeʳ⁻¹  (h  id)) #ᵇ
      helper₂ {Z} h = begin 
        (g  swap)  (h #  id) ≈⟨ pullʳ swap∘⁂  
        g  (id  h #)  swap ≈⟨ pullˡ (g-preserving h)  
        ((g +₁ id)  distributeˡ⁻¹  (id  h)) #ᵇ  swap ≈⟨ sym (#ᵇ-Uniformity uni-helper)  
        ((g  swap +₁ id)  distributeʳ⁻¹  (h  id)) #ᵇ 
        where
          uni-helper : (id +₁ swap)  (g  swap +₁ id)  distributeʳ⁻¹  (h  id)  ((g +₁ id)  distributeˡ⁻¹  (id  h))  swap
          uni-helper = pullˡ +₁∘+₁  (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl  (sym +₁∘+₁) ⟩∘⟨refl  pullʳ (pullˡ (sym distributeˡ⁻¹∘swap))  (refl⟩∘⟨ (pullʳ swap∘⁂  sym-assoc))  sym-assoc

  record StableFreeElgotAlgebra : Set (suc o  suc   suc e) where 
    field
      Y : Obj
      freeElgot : FreeElgotAlgebra Y
      isStableFreeElgotAlgebra : IsStableFreeElgotAlgebra freeElgot
    
    open IsStableFreeElgotAlgebra isStableFreeElgotAlgebra public