## Summary We work in an ambient category that - is extensive (has finite coproducts and pullbacks along injections) - is cartesian (has finite products, extensive + cartesian also gives a distributivity isomorphism) - has a parametrized NNO ℕ - has exponentials `X^ℕ`
module Category.Ambient where
  record Ambient (o  e : Level) : Set (suc o  suc   suc e) where
    field
      C : Category o  e
      extensive : Extensive C
      cartesian : Cartesian C
       : ParametrizedNNO (record { U = C ; cartesian = cartesian })
      -- _^ℕ : ∀ X → Exponential C (ParametrizedNNO.N ℕ) X

    cartesianCategory : CartesianCategory o  e
    cartesianCategory = record { U = C ; cartesian = cartesian }

    open Category C renaming (id to idC) public
    open Extensive extensive public
    open Cocartesian cocartesian renaming (+-unique to []-unique) public
    open Cartesian cartesian public

    -- some helpers
    monoidal : Monoidal C
    monoidal = CartesianMonoidal.monoidal cartesian

    symmetric : Symmetric monoidal
    symmetric = symm C cartesian

    braided : Braided monoidal
    braided = Symmetric.braided symmetric

    open BinaryProducts products renaming (η to ⁂-η; g-η to ⁂-g-η; unique to ⟨⟩-unique; unique′ to ⟨⟩-unique′) public
    open ParametrizedNNO  public renaming (η to pnno-η)

    open CartesianMonoidal cartesian using (⊤×A≅A; A×⊤≅A) public


    distributive : Distributive C
    distributive = Extensive×Cartesian⇒Distributive C extensive cartesian
    open Distributive distributive hiding (cartesian; cocartesian) public
    open M' C
    open HomReasoning
    open MR' C
    open Equiv

    open import Categories.Category.Distributive.Properties distributive public

    distribute₄ :  {A B C D}  (distributeʳ⁻¹ +₁ distributeʳ⁻¹)  distributeˡ⁻¹ {A + B} {C} {D}  [ i₁ +₁ i₁ , i₂ +₁ i₂ ]  (distributeˡ⁻¹ +₁ distributeˡ⁻¹)  distributeʳ⁻¹
    distribute₄ = Iso⇒Epi C (IsIso.iso isIsoʳ) ((distributeʳ⁻¹ +₁ distributeʳ⁻¹)  distributeˡ⁻¹) ([ i₁ +₁ i₁ , i₂ +₁ i₂ ]  (distributeˡ⁻¹ +₁ distributeˡ⁻¹)  distributeʳ⁻¹) (begin 
      (((distributeʳ⁻¹ +₁ distributeʳ⁻¹)  distributeˡ⁻¹)  distributeʳ)                                                                                                ≈⟨ ∘[]  
      [ (((distributeʳ⁻¹ +₁ distributeʳ⁻¹)  distributeˡ⁻¹)  (i₁  idC)) , (((distributeʳ⁻¹ +₁ distributeʳ⁻¹)  distributeˡ⁻¹)  (i₂  idC)) ]                         ≈⟨ []-cong₂ (pullʳ ((refl⟩∘⟨ (⁂-cong₂ refl (sym ([]-unique id-comm-sym id-comm-sym))))  sym (distributeˡ⁻¹-natural i₁ idC idC))) (pullʳ (((refl⟩∘⟨ (⁂-cong₂ refl (sym ([]-unique id-comm-sym id-comm-sym))))  sym (distributeˡ⁻¹-natural i₂ idC idC))))  
      [ (distributeʳ⁻¹ +₁ distributeʳ⁻¹)  ((i₁  idC) +₁ (i₁  idC))  distributeˡ⁻¹ , (distributeʳ⁻¹ +₁ distributeʳ⁻¹)  ((i₂  idC) +₁ (i₂  idC))  distributeˡ⁻¹ ] ≈⟨ []-cong₂ (pullˡ (+₁∘+₁  +₁-cong₂ distributeʳ⁻¹-i₁ distributeʳ⁻¹-i₁)) (pullˡ (+₁∘+₁  +₁-cong₂ distributeʳ⁻¹-i₂ distributeʳ⁻¹-i₂)) 
      [ (i₁ +₁ i₁)  distributeˡ⁻¹ , (i₂ +₁ i₂)  distributeˡ⁻¹ ]                                                                                                       ≈˘⟨ []∘+₁  
      ([ i₁ +₁ i₁ , i₂ +₁ i₂ ]  (distributeˡ⁻¹ +₁ distributeˡ⁻¹))                                                                                                      ≈˘⟨ pullʳ (cancelʳ (IsIso.isoˡ isIsoʳ))  
      (([ i₁ +₁ i₁ , i₂ +₁ i₂ ]  (distributeˡ⁻¹ +₁ distributeˡ⁻¹)  distributeʳ⁻¹)  distributeʳ)                                                                      )


    distributeˡ⁻¹-assoc :  {A B C D : Obj}  distributeˡ⁻¹  (idC  distributeˡ⁻¹)  _≅_.to ×-assoc  (_≅_.to ×-assoc +₁ _≅_.to ×-assoc)  distributeˡ⁻¹ {A × B} {C} {D}
    distributeˡ⁻¹-assoc {A} {B} {U} {D} = Iso⇒Epi C (IsIso.iso isIsoˡ) (distributeˡ⁻¹  (idC  distributeˡ⁻¹)  _≅_.to ×-assoc) ((_≅_.to ×-assoc +₁ _≅_.to ×-assoc)  distributeˡ⁻¹) (begin 
      (distributeˡ⁻¹  (idC  distributeˡ⁻¹)  _≅_.to ×-assoc)  [ idC  i₁ , idC  i₂ ]                                                                                                                          ≈⟨ ∘[]  
      [ (distributeˡ⁻¹  (idC  distributeˡ⁻¹)  _≅_.to ×-assoc)  (idC  i₁) , (distributeˡ⁻¹  (idC  distributeˡ⁻¹)  _≅_.to ×-assoc)  (idC  i₂) ]                                                           ≈⟨ []-cong₂ (pullʳ (pullʳ ⟨⟩∘)) (pullʳ (pullʳ ⟨⟩∘))  
      [ distributeˡ⁻¹  (idC  distributeˡ⁻¹)   (π₁  π₁)  (idC  i₁) ,  π₂  π₁ , π₂   (idC  i₁)  , distributeˡ⁻¹  (idC  distributeˡ⁻¹)   (π₁  π₁)  (idC  i₂) ,  π₂  π₁ , π₂   (idC  i₂)  ] ≈⟨ []-cong₂ (refl⟩∘⟨ ⁂∘⟨⟩) (refl⟩∘⟨ ⁂∘⟨⟩)  
      [ distributeˡ⁻¹   idC  (π₁  π₁)  (idC  i₁) , distributeˡ⁻¹   π₂  π₁ , π₂   (idC  i₁)  , distributeˡ⁻¹   idC  (π₁  π₁)  (idC  i₂) , distributeˡ⁻¹   π₂  π₁ , π₂   (idC  i₂)  ]     ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ identityˡ refl)) (refl⟩∘⟨ (⟨⟩-cong₂ identityˡ refl))  
      [ distributeˡ⁻¹   (π₁  π₁)  (idC  i₁) , distributeˡ⁻¹   π₂  π₁ , π₂   (idC  i₁)  , distributeˡ⁻¹   (π₁  π₁)  (idC  i₂) , distributeˡ⁻¹   π₂  π₁ , π₂   (idC  i₂)  ]                 ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) (refl⟩∘⟨ ⟨⟩∘))) (refl⟩∘⟨ ⟨⟩-cong₂ (pullʳ π₁∘⁂) (refl⟩∘⟨ ⟨⟩∘))  
      [ distributeˡ⁻¹   π₁  idC  π₁ , distributeˡ⁻¹   (π₂  π₁)  (idC  i₁) , π₂  (idC  i₁)   , distributeˡ⁻¹   π₁  idC  π₁ , distributeˡ⁻¹   (π₂  π₁)  (idC  i₂) , π₂  (idC  i₂)   ]     ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂)))) (refl⟩∘⟨ (⟨⟩-cong₂ (refl⟩∘⟨ identityˡ) (refl⟩∘⟨ (⟨⟩-cong₂ (pullʳ π₁∘⁂) π₂∘⁂))))  
      [ distributeˡ⁻¹   π₁  π₁ , distributeˡ⁻¹   π₂  idC  π₁ , i₁  π₂   , distributeˡ⁻¹   π₁  π₁ , distributeˡ⁻¹   π₂  idC  π₁ , i₂  π₂   ]                                                   ≈⟨ []-cong₂ (refl⟩∘⟨ ⟨⟩-cong₂ refl (refl⟩∘⟨ ⟨⟩-cong₂ ((refl⟩∘⟨ identityˡ)  sym identityˡ) refl)) (refl⟩∘⟨ ⟨⟩-cong₂ refl (refl⟩∘⟨ ⟨⟩-cong₂ ((refl⟩∘⟨ identityˡ)  sym identityˡ) refl))  
      [ distributeˡ⁻¹   π₁  π₁ , distributeˡ⁻¹   idC  π₂  π₁ , i₁  π₂   , distributeˡ⁻¹   π₁  π₁ , distributeˡ⁻¹   idC  π₂  π₁ , i₂  π₂   ]                                                   ≈˘⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ ⁂∘⟨⟩))) (refl⟩∘⟨ (⟨⟩-cong₂ refl (refl⟩∘⟨ ⁂∘⟨⟩)))   
      [ distributeˡ⁻¹   π₁  π₁ , distributeˡ⁻¹  (idC  i₁)   π₂  π₁ , π₂   , distributeˡ⁻¹   π₁  π₁ , distributeˡ⁻¹  (idC  i₂)   π₂  π₁ , π₂   ]                                               ≈⟨ []-cong₂ (refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (pullˡ distributeˡ⁻¹-i₁))) (refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (pullˡ distributeˡ⁻¹-i₂)))  
      [ distributeˡ⁻¹   idC  π₁  π₁ , i₁   π₂  π₁ , π₂   , distributeˡ⁻¹   idC  π₁  π₁ , i₂   π₂  π₁ , π₂   ]                                                                                   ≈˘⟨ []-cong₂ (refl⟩∘⟨ ⁂∘⟨⟩) (refl⟩∘⟨ ⁂∘⟨⟩)  
      [ distributeˡ⁻¹  (idC  i₁)   π₁  π₁ ,  π₂  π₁ , π₂   , distributeˡ⁻¹  (idC  i₂)   π₁  π₁ ,  π₂  π₁ , π₂   ]                                                                               ≈⟨ []-cong₂ (pullˡ distributeˡ⁻¹-i₁) (pullˡ distributeˡ⁻¹-i₂)  
      (_≅_.to ×-assoc +₁ _≅_.to ×-assoc)                                                                                                                                                                          ≈˘⟨ cancelʳ (IsIso.isoˡ isIsoˡ)  
      ((_≅_.to ×-assoc +₁ _≅_.to ×-assoc)  distributeˡ⁻¹)  distributeˡ                                                                                                                                          )

    module M = M'
    module MR = MR'
    module MP = MP'

    -- TODO should be in agda-categories
    Kleisli⇒Monad⇒Kleisli :  (K : KleisliTriple C) {X Y} (f : X  RMonad.F₀ K Y)  RMonad.extend (Monad⇒Kleisli C (Kleisli⇒Monad C K)) f  RMonad.extend K f
    Kleisli⇒Monad⇒Kleisli K f = begin 
      extend idC  extend (unit  f) ≈⟨ sym kleisli.assoc  
      extend (extend idC  unit  f) ≈⟨ extend-≈ (pullˡ kleisli.identityʳ) 
      extend (idC  f)               ≈⟨ extend-≈ (identityˡ) 
      extend f                       
      where 
        module kleisli = RMonad K 
        open kleisli using (unit; extend; extend-≈)
    Monad⇒Kleisli⇒Monad :  (M : Monad C) {X Y} (f : X  Monad.F.₀ M Y)  Monad.F.₁ (Kleisli⇒Monad C (Monad⇒Kleisli C M)) f  Monad.F.₁ M f
    Monad⇒Kleisli⇒Monad M f = begin 
      μ.η _  F.₁ (η.η _  f) ≈⟨ refl⟩∘⟨ F.homomorphism  
      μ.η _  F.₁ (η.η _)  F.₁ f ≈⟨ cancelˡ monad.identityˡ  
      F.₁ f 
      where
        module monad = Monad M
        open monad using (F; η; μ)
    F₁⇒extend :  (M : Monad C) {X Y} (f : X  Y)  RMonad.extend (Monad⇒Kleisli C M) (RMonad.unit (Monad⇒Kleisli C M)  f)  Monad.F.₁ M f
    F₁⇒extend M f = begin 
      μ.η _  F.₁ (η.η _  f) ≈⟨ refl⟩∘⟨ F.homomorphism  
      μ.η _  F.₁ (η.η _)  F.₁ f ≈⟨ cancelˡ m-identityˡ  
      F.₁ f 
      where open Monad M using (F; η; μ) renaming (identityˡ to m-identityˡ)

    extend∘F₁ :  (M : Monad C) {X Y Z} (f : Y  Monad.F.₀ M Z) (g : X  Y)  RMonad.extend (Monad⇒Kleisli C M) f  Monad.F.₁ M g  RMonad.extend (Monad⇒Kleisli C M) (f  g)
    extend∘F₁ M f g = begin 
      extend f  F.₁ g ≈⟨ (refl⟩∘⟨ sym (F₁⇒extend M g))  
      extend f  extend (unit  g) ≈⟨ k-sym-assoc  
      extend (extend f  unit  g) ≈⟨ extend-≈ (pullˡ k-identityʳ)  
      extend (f  g) 
      where 
        open Monad M using (F)
        open RMonad (Monad⇒Kleisli C M) using (extend; unit; extend-≈) renaming (sym-assoc to k-sym-assoc; identityʳ to k-identityʳ)

     :  {X}  X + X  X
     = [ idC , idC ]