module Monad.Instance.K.EquationalLifting {o ℓ e} (ambient : Ambient o ℓ e) (MK : MIK.MonadK ambient) where
open Ambient ambient
open MIK ambient
open MonadK MK
open import Monad.Instance.K.Strong ambient MK
open import Category.Construction.ElgotAlgebras cocartesian
open import Algebra.Elgot cocartesian
open import Algebra.Elgot.Stable distributive using (IsStableFreeElgotAlgebra)
open HomReasoning
open Equiv
open M C
open MR C
open kleisliK using (extend)
open monadK using (μ)
open FreeObject using (*-uniq)
open Elgot-Algebra using (#-Uniformity; #-Fixpoint; #-resp-≈)
open strongK using (strengthen)
private
η = λ Z → FreeObject.η (freealgebras Z)
_♯ = λ {A X Y} f → IsStableFreeElgotAlgebra.[_,_]♯ {Y = X} (stable X) {X = A} (algebras Y) f
_# = λ {A} {X} f → Elgot-Algebra._# (algebras A) {X = X} f
# **K** is an equational lifting monad
equationalLifting : ∀ {X} → τ (K.₀ X , X) ∘ Δ {K.₀ X} ≈ K.₁ ⟨ η X , idC ⟩
equationalLifting {X} = *-uniq (freealgebras _) (η _ ∘ ⟨ η X , idC ⟩) (record { h = τ (K.₀ X , X) ∘ Δ ; preserves = preserves' }) commute
where
preserves' : ∀ {Z} {f : Z ⇒ K.₀ X + Z} → (τ (K.₀ X , X) ∘ Δ) ∘ f # ≈ ((τ (K.₀ X , X) ∘ Δ +₁ idC) ∘ f) #
preserves' {Z} {f} = begin
(τ (K.₀ X , X) ∘ Δ) ∘ f # ≈⟨ pullʳ Δ∘ ⟩
τ (K.₀ X , X) ∘ ⟨ f # , f # ⟩ ≈⟨ helper₁ ⟩
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ f))# ∘ ⟨ f # , idC ⟩ ≈⟨ helper₂ ⟩
((τ (K.₀ X , X) ∘ Δ +₁ idC) ∘ f) # ∎
where
helper₁ : τ (K.₀ X , X) ∘ ⟨ f # , f # ⟩ ≈ ((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ f))# ∘ ⟨ f # , idC ⟩
helper₁ = begin
τ (K.₀ X , X) ∘ ⟨ f # , f # ⟩ ≈⟨ refl⟩∘⟨ ((⟨⟩-cong₂ (sym identityˡ) (sym identityʳ)) ○ sym ⁂∘⟨⟩) ⟩
τ (K.₀ X , X) ∘ (idC ⁂ f #) ∘ ⟨ f # , idC ⟩ ≈⟨ pullˡ (τ-comm f) ⟩
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ f))# ∘ ⟨ f # , idC ⟩ ∎
helper₂ : ((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ f))# ∘ ⟨ f # , idC ⟩ ≈ ((τ (K.₀ X , X) ∘ Δ +₁ idC) ∘ f) #
helper₂ = sym (#-Uniformity (algebras _) (begin
(idC +₁ ⟨ f # , idC ⟩) ∘ (τ (K.₀ X , X) ∘ Δ +₁ idC) ∘ f ≈⟨ pullˡ +₁∘+₁ ⟩
(idC ∘ τ (K.₀ X , X) ∘ Δ +₁ ⟨ f # , idC ⟩ ∘ idC) ∘ f ≈⟨ (+₁-cong₂ identityˡ id-comm) ⟩∘⟨refl ⟩
(τ (K.₀ X , X) ∘ Δ +₁ idC ∘ ⟨ f # , idC ⟩) ∘ f ≈⟨ (sym +₁∘+₁) ⟩∘⟨refl ⟩
((τ _ +₁ idC) ∘ (Δ +₁ ⟨ f # , idC ⟩)) ∘ f ≈⟨ assoc ⟩
(τ _ +₁ idC) ∘ (Δ +₁ ⟨ f # , idC ⟩) ∘ f ≈⟨ refl⟩∘⟨ distrib ⟩
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ ⟨ f # , f ⟩ ≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ ⟨⟩-cong₂ identityˡ identityʳ ⟩
(τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ ⟨ idC ∘ f # , f ∘ idC ⟩ ≈˘⟨ pullʳ (pullʳ ⁂∘⟨⟩) ⟩
((τ _ +₁ idC) ∘ distributeˡ⁻¹ ∘ (idC ⁂ f)) ∘ ⟨ f # , idC ⟩ ∎))
where
distrib : (Δ +₁ ⟨ f # , idC ⟩) ∘ f ≈ distributeˡ⁻¹ ∘ ⟨ f # , f ⟩
distrib = Iso⇒Mono C (IsIso.iso isIsoˡ) ((Δ +₁ ⟨ f # , idC ⟩) ∘ f) (distributeˡ⁻¹ ∘ ⟨ f # , f ⟩) (begin
distributeˡ ∘ (Δ +₁ ⟨ f # , idC ⟩) ∘ f ≈⟨ pullˡ []∘+₁ ⟩
[ (idC ⁂ i₁) ∘ Δ , (idC ⁂ i₂) ∘ ⟨ f # , idC ⟩ ] ∘ f ≈⟨ ([]-cong₂ ⁂∘Δ ⁂∘⟨⟩) ⟩∘⟨refl ⟩
[ ⟨ idC , i₁ ⟩ , ⟨ idC ∘ f # , i₂ ∘ idC ⟩ ] ∘ f ≈⟨ ([]-unique
(⟨⟩∘ ○ (⟨⟩-cong₂ inject₁ identityˡ))
(⟨⟩∘ ○ (⟨⟩-cong₂ (inject₂ ○ sym identityˡ) id-comm-sym))) ⟩∘⟨refl ⟩
⟨ [ idC , f # ] , idC ⟩ ∘ f ≈⟨ ⟨⟩∘ ⟩
⟨ [ idC , f # ] ∘ f , idC ∘ f ⟩ ≈˘⟨ ⟨⟩-cong₂ (#-Fixpoint (algebras _)) (sym identityˡ) ⟩
⟨ f # , f ⟩ ≈˘⟨ cancelˡ (IsIso.isoʳ isIsoˡ) ⟩
distributeˡ ∘ distributeˡ⁻¹ ∘ ⟨ f # , f ⟩ ∎)
commute : (τ (K.₀ X , X) ∘ Δ) ∘ η _ ≈ η _ ∘ ⟨ η X , idC ⟩
commute = begin
(τ (K.₀ X , X) ∘ Δ) ∘ η _ ≈⟨ pullʳ Δ∘ ⟩
τ (K.₀ X , X) ∘ ⟨ η X , η X ⟩ ≈⟨ refl⟩∘⟨ (⟨⟩-cong₂ (sym identityˡ) (sym identityʳ) ○ sym ⁂∘⟨⟩) ⟩
τ (K.₀ X , X) ∘ (idC ⁂ η X) ∘ ⟨ η X , idC ⟩ ≈⟨ pullˡ (τ-η _) ⟩
η _ ∘ ⟨ η X , idC ⟩ ∎